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We solve the currently smallest open case in the 1976 problem of Molluzzo on Z/mZ, namely the case m = 4. This amounts to constructing, for all positive integer n congruent to 0 or 7 mod 8, a sequence of integers modulo 4 of length n generating, by Pascal's rule, a Steinhaus triangle containing 0,1,2,3 with equal multiplicities.

Introduction

The problem of Molluzzo in combinatorial number theory is about the existence of certain triangular arrays in Z/mZ. It was first formulated by Steinhaus in 1958 for m = 2 [START_REF] Steinhaus | One Hundred Problems in Elementary Mathematics[END_REF], and then generalized by Molluzzo in 1976 for m ≥ 3 [START_REF] Molluzzo | Theory and applications of graphs[END_REF]. It is still widely open for most moduli m. The problem reads as follows. Given m ≥ 2, for which n ≥ 1 does there exist a triangle

x 1,1 x 1,2
x 2,1

x 1,n x 1,n-1

x 2,n-1

x n,1 ∇ = with entries x i,j in Z/mZ, of side length n, satisfying the following two conditions:

(C1) Pascal's rule: every element of ∇ outside the first row is the sum of the two elements above it. That is, x i,j = x i-1,j + x i-1,j-1 for all 2 ≤ i ≤ n and 1 ≤ j ≤ n -i.

(C2) The elements of Z/mZ all occur with the same multiplicity in ∇.

Definition 1. A triangle ∇ in Z/mZ satisfying condition (C1) is called a Steinhaus triangle. It is said to be balanced if it satisfies condition (C2).

By (C1), a Steinhaus triangle is completely determined by its first row S, and may thus be denoted by ∇S. For instance, the sequence S = 0100203 in Z/4Z generates the following Steinhaus triangle ∇S: 0 1 0 0 2 0 3 1 1 0 2 2 3 2 1 2 0 1 3 3 2 1 2 1 3 3 0 3

Observe that ∇S is balanced, since each element of Z/4Z appears with the same multiplicity, namely 7.

An obvious necessary condition for the existence of a balanced Steinhaus triangle ∇ in Z/mZ of side length n is given by

n + 1 2 ≡ 0 mod m. (1) 
Indeed, it follows from (C2) that m divides the multiset cardinality of ∇, which is n+1 2 . Is this necessary condition also sufficient? This is the more detailed content of Molluzzo's problem. While it seems reasonable to conjecture a positive answer in most cases, two counterexamples are known: in Z/15Z and in Z/21Z, there is no balanced Steinhaus triangle of side length 5 and 6, respectively, even though the pairs (m, n) = (15, 5) and (21, 6) both satisfy condition [START_REF] Chappelon | Regular Steinhaus graphs and Steinhaus triangles in finite cyclic groups[END_REF]. (See [1, p. 75] and [3, p. 293].)

Note that, given m ≥ 2, the condition for n ∈ N to satisfy (1) only depends on the class of n mod m if m is odd, or mod 2m if m is even.

Known results

Despite its apparent simplicity, the problem of Molluzzo is very challenging, as testified by the scarcity of available results. The only moduli m for which it has been completely solved so far are [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF][START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF][START_REF] Eliahou | Zero-sum balanced binary sequences[END_REF],

• m = 2 in
• m = 3 i for all i ≥ 1 in [1, 2],
• m = 5, 7 in [START_REF] Chappelon | Regular Steinhaus graphs and Steinhaus triangles in finite cyclic groups[END_REF][START_REF] Chappelon | Balanced Steinhaus triangles in Z/5Z and Z/7Z[END_REF].

In each case, the necessary existence condition (1) turns out to be sufficient.

Contents

In this paper, we solve the currently smallest open case of the problem, namely the case m = 4. Our solution is presented in Section 2 and proved valid in Section 3. Here again, the necessary existence condition (1) is found to be sufficient. The construction method, which consists in attempting to lift to Z/4Z specific known solutions in Z/2Z, is explained in Section 4. It will probably take some time before complete solutions emerge for more moduli. For this reason we propose, in a short concluding section, a hopefully more tractable version of the problem.

A solution for m = 4

Here we solve Molluzzo's problem in the group Z/4Z. For m = 4, it is easy to see that the necessary condition (1) amounts to the following: for all n ∈ N, we have n + 1 2 ≡ 0 mod 4 ⇐⇒ n ≡ 0 or 7 mod 8.

As in [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF] for the case m = 2, our solution involves the concept of strongly balanced triangles. We first introduce a notation for initial segments of sequences. Notation 1. Let S = (x i ) i≥1 be a finite or infinite sequence, and let l ≥ 0 be an integer not exceeding the length of S. We denote by S[l] = (x 1 , . . . , x l ) the initial segment of length l of S. Definition 2. Let S be a finite sequence of length n ≥ 0 in Z/4Z. The Steinhaus triangle ∇S is said to be strongly balanced if, for every 0 ≤ t ≤ n/8, the Steinhaus triangle ∇S[n -8t] is balanced.

Here is our main result in this paper.

Theorem 1. There exists a balanced Steinhaus triangle of length n in Z/4Z if and only if n+1 2 ≡ 0 mod 4. More precisely, consider the following infinite, eventually periodic sequences in Z/4Z:

S 1 = 01220232(212113220030232311200232) ∞ , S 2 = 21210130(200132022112002110220130) ∞ , T 1 = 0120021(212202102023032200322021) ∞ , T 2 = 1000212(312223301210312003103232) ∞ , T 3 = 1200210(220101222032222103000210) ∞ , T 4 = 2102203(232002102021230022302203) ∞ .
Then, for all integers i, j, k such that 1 ≤ i ≤ 2, 1 ≤ j ≤ 4 and k ≥ 0, the Steinhaus triangles of the initial segments S i [8k] and T j [8k + 7] are strongly balanced.

Proof of Theorem 1

We now prove the above theorem. Actually, only the statements concerning S 1 are treated in detail. The proof method for the other sequences S 2 , T 1 , T 2 , T 3 , T 4 is similar and only briefly commented. Notation 2. Let A, B be two blocks, either triangles or lozenges. We denote by A * B the unique parallelogram they would determine by Pascal's rule (C1) if they were adjacent in a large Steinhaus triangle (as may be freely assumed to be the case). See Figure 1. Note that A * B only depends on the right lower side of A and the left lower side of B, and is a lozenge if A, B have the same side length. For example:

• if A = 0 1 1 and B = 2 3 1 , then A * B = 3 0 0 0 since 0 1 2 3 1 3 1 0 0 0 ; • if A = 2 2 3 1 and B = 3 0 2 2 , then A * B = 3 0 1 1 since 2 2 3 1 3 0 2 2 3 0 1 1 .
Consider now the four triangular blocks A 0 , A 1 , A 2 , A 3 depicted in Figure 3. Taking the * product of selected pairs, we define

B i = A i * A i+1 for i = 0, 1, 2 and B 3 = A 3 * A 1 . (2) 
Similarly, we set

C i = B i * B i+1 for i = 0, 1, 2 and C 3 = B 3 * B 1 . (3) 
Finally, we also need to set

D 0 = C 0 * C 1 and E 0 = D 0 * C 3 . (4) 
The blocks A i , B i , C i , D 0 , E 0 (i = 1, 2, 3) are displayed in Figure 3. In view of the following lemma, we shall refer to them as the building blocks of ∇S 1 [8k].

Lemma 1. For every integer k ≥ 0, the Steinhaus triangle ∇S 1 [8k] has the structure depicted in Figure 2, where A i , B i , C i and D 0 , E 0 are the blocks defined above.

Proof. Recall that S 1 = 01220232(212113220030232311200232) ∞ . Thus, S 1 is made of an initial block I = 01220232 of length 8, and a period P 1 P 2 P 3 of length 24 = 3 × 8, where

P 1 = 21211322, P 2 = 00302323, P 3 = 11200232. A 0 A 1 A 2 A 3 A 1 A 2 A 3 A 1 B 0 B 1 B 2 B 3 B 1 B 2 B 3 C 0 C 1 C 2 C 3 C 1 C 2 D 0 C 3 C 1 C 2 C 3 E 0 C 2 C 3 C 1 C 0 C 1 C 2 D 0 C 3 E 0 Figure 2: Structure of ∇S 1 [8k]
Observe that A 0 = ∇I and A i = ∇P i for i = 1, 2, 3. This accounts for the top structure of ∇S 1 [8k]. Now, by definition we have

B 0 = A 0 * A 1 , B 1 = A 1 * A 2 , B 2 = A 2 * A 3 , B 3 = A 3 * A 1 , C 0 = B 0 * B 1 , C 1 = B 1 * B 2 , C 2 = B 2 * B 3 , C 3 = B 3 * B 1 , D 0 = C 0 * C 1 , E 0 = D 0 * C 3 .

It remains to show that

C 1 * C 2 = C 3 , C 2 * C 3 = C 1 , C 3 * C 1 = C 2 and E 0 * C 2 = C 0 .
To do this, recall that the * product of two blocks only depends on their lower sides, and observe on Figure 3 that -the lower sides of C 1 coincide with those of B 3 ;

-the lower sides of C 2 coincide with those of B 1 ;

-the lower sides of C 3 coincide with those of B 2 ;

-the lower sides of E 0 coincide with those of B 0 .

It follows that

C 1 * C 2 = B 3 * B 1 = C 3 , C 2 * C 3 = B 1 * B 2 = C 1 , C 3 * C 1 = B 2 * B 3 = C 2 , E 0 * C 2 = B 0 * B 1 = C 0 , (5) 
as desired. This completes the proof of the lemma.

We are now in a position to prove our main result.

Proof of Theorem 1 for S 1 . We shall prove, by induction on k, that the Steinhaus triangle ∇S 1 [8k] is strongly balanced. This is true for k = 0. For k ≥ 1, it suffices to show that 0 1 2 2 0 2 3 2 1 3 0 2 2 1 1 0 3 2 0 3 2

3 1 2 3 1 0 3 1 0 3 0 1 3 1 0 2 1 2 1 1 3 2 2 3 3 3 2 0 1 0 2 2 1 2 1 1 0 3 3 3 2 3 2 2 1 1 0 3 1 3 0 0 0 3 0 2 3 2 3 0 3 3 2 1 1 1 3 2 1 3 2 2 1 3 0 1 0 0 3 1 1 3 0 2 3 2 1 1 1 2 0 0 2 3 2 2 3 2 0 2 1 1 1 1 2 2 3 2 2 3 0 1 1 1 3 1 2 0 0 3 0 3 3 A 0 A 1 A 2 A 3 0 1 3 3 0 1 0 3 1 1 0 3 0 2 0 1 3 3 2 2 1 2 0 2 1 0 3 2 2 2 2 3 1 3 1 2 0 0 1 0 0 0 3 0 1 1 0 0 3 1 2 1 0 3 3 3 1 3 2 0 0 2 0 2 2 2 2 3 0 1 1 3 1 2 2 0 0 3 2 1 2 0 3 1 1 0 3 2 3 0 2 0 0 3 1 1 3 2 2 1 3 0 2 0 1 0 3 3 2 2 1 1 3 1 0 3 2 0 1 3 1 2 0 0 3 0 3 3 0 1 2 3 3 3 3 2 2 1 0 1 0 3 2 2 1 1 3 1 2 0 3 2 0 0 3 2 1 3 1 2 0 3 1 1 0 0 3 2 3 0 2 0 3 1 1 3 2 3 0 2 0 1 3 2 2 1 1 0 3 1 3 0 0 1 3 3 0 1 0 3 1 1 2 3 0 2 0 1 1 3 2 2 1 0 2 0 1 0 3 2 3 2 2 1 1 3 1 2 1 0 3 2 0 0 3 1 3 1 2 0 3 0 0 3 2 3 0 3 1 1 3 0 2 3 2 1 B 0 B 1 B 2 B 3 2 1 1 0 2 0 3 2 2 1 2 1 0 3 2 2 3 1 3 1 2 2 1 0 0 0 3 2 0 3 1 0 0 3 1 1 3 0 1 0 3 0 2 3 1 1 3 3 2 0 2 0 2 1 2 2 2 3 0 0 1 0 1 1 2 1 2 0 3 2 0 3 1 1 2 3 0 2 0 1 1 3 2 2 1 0 2 0 1 0 3 2 3 2 2 1 1 3 1 2 1 0 3 2 0 0 3 1 3 1 2 0 3 0 0 3 2 3 0 3 1 1 3 0 2 3 2 1 0 2 1 0 3 2 1 3 1 2 2 0 0 3 2 1 2 0 3 1 1 0 3 2 3 0 2 0 0 3 1 1 3 2 2 1 3 0 2 0 1 0 3 3 2 2 1 1 3 1 0 3 2 0 1 3 1 2 0 0 3 0 3 3 2 1 1 0 2 0 3 2 2 1 0 1 0 3 2 2 1 1 3 1 2 0 3 2 0 0 3 2 1 3 1 2 0 3 1 1 0 0 3 2 3 0 2 0 3 1 1 3 2 3 0 2 0 1 3 2 2 1 1 0 3 1 3 0 C 0 C 1 C 2 C 3 Figure 3: The building blocks of ∇S 1 [8k] 0 2 1 0 3 2 1 3 1 2 0 0 0 3 2 1 0 0 3 1 1 2 1 0 3 0 2 0 3 3 1 3 3 2 2 1 2 0 0 2 1 0 3 2 0 2 3 1 3 2 2 1 0 0 0 3 1 0 3 0 1 3 1 0 2 1 2 0 3 2 0 3 1 1 0 3 0 2 0 1 3 3 2 2 1 2 0 2 1 0 3 2 2 2 2 3 1 3 1 2 0 0 1 0 0 0 3 0 1 1 0 0 3 1 2 1 0 3 3 3 1 3 2 0 0 2 0 2 D 0 E 0 Figure 3: The building blocks of ∇S 1 [8k] (continued)
∇S 1 [8k] is balanced. It will then automatically be strongly balanced since ∇S 1 [8k -8] is, by the induction hypothesis. Thus, we are assuming that 0, 1, 2, 3 occur with the same multiplicity in ∇S 1 [8k -8], and we must show that this remains true in

∇S 1 [8k].
Consider the multiset difference

T = ∇S 1 [8k] \ ∇S 1 [8k -8],
a band of width 8 bordering the eastern side of ∇S 1 [8k]. To conclude the proof, we need only show that 0, 1, 2, 3 occur with the same multiplicity in T . For any finite multiset X on Z/4Z, and for all j ∈ Z/4Z, let us denote by m X (j) the occurrence multiplicity of j in X.

In order to determine the function m T on Z/4Z, we need to determine m X for the building blocks X = A i , B i , C i , D 0 , E 0 . This is done in Table 1. Let now C denote the 

A 0 A 1 A 2 A 3 B 0 B 1 B 2 B 3 C 0 C 1 C 2 C 3 D 0 E 0 0 9 5 8 
m C (j) = m C 1 (j) + m C 2 (j) + m C 3 (j)
for all j ∈ Z/4Z. Looking at the columns below C 1 , C 2 , C 3 in Table 1, we see that m C (j) = 15 + 16 + 17 = 48 [START_REF] Eliahou | Zero-sum balanced binary sequences[END_REF] for all j ∈ Z/4Z. We are now ready to show that m T is constant on Z/4Z. For this, we need to distinguish 3 cases, according to the class of k mod 3.

• Case 1: k = 3q. Figure 2 shows that the building blocks making up T are A 2 , B 1 and C 0 occurring once each, and C 1 , C 2 , C 3 occurring q -1 times each. Therefore, using Table 1 and ( 6), we get

m T (j) = m A 2 (j) + m B 1 (j) + m C 0 (j) + (q -1)m C (j)
= 41 + 48(q -1), for all j ∈ Z/4Z.

• Case 2: k = 3q + 1. In this case, the building blocks making up T are A 3 , B 2 , C 1 and D 0 occurring once each, and C 1 , C 2 , C 3 occurring q -1 times each. Thus

m T (j) = m A 3 (j) + m B 2 (j) + m C 1 (j) + m D 0 (j) + (q -1)m C (j)
= 57 + 48(q -1), for all j ∈ Z/4Z.

• Case 3: k = 3q + 2. Now, the building blocks making up T are A 1 , B 3 , C 2 , C 3 and E 0 occurring once each, and C 1 , C 2 , C 3 occurring q -1 times each. Thus

m T (j) = m A 1 (j) + m B 3 (j) + m C 2 (j) + m C 3 (j) + m E 0 (j) + (q -1)m C (j)
= 73 + 48(q -1), for all j ∈ Z/4Z.

Hence m T is constant on Z/4Z in each case, as desired. This completes the proof of Theorem 1 for the sequence S 1 .

The proof for the sequences S 2 , T 1 , T 2 , T 3 , T 4 follows similar lines. To start with, the structure of each derived triangle is the same as in Figure 2. Indeed, let A 0 , A 1 , A 2 , A 3 be the triangles constructed from the finite subsequences given in Table 2 for each sequence

S 2 , T 1 , T 2 , T 3 , T 4 . Let now B 0 , B 1 , B 2 , B 3 , C 0 , C 1 , C 2 , C 3 ,
D 0 , E 0 be the blocks defined by the same formulae (2), ( 3) and ( 4) as in the proof for S 1 . Then, as easily verified, the equalities (5) still hold. Finally, as for S 1 , the conclusion of the proof follows from the knowledge of the multiplicities of 0, 1, 2, 3 ∈ Z/4Z for each block. For convenience, these multiplicities are made explicit in Table 3. 

A 0 A 1 A 2 A 3 S 2 ∇(21210130) ∇(20013202) ∇(21120021) ∇(10220130) T 1 ∇(0120021) ∇(21220210) ∇(20230322) ∇(00322021) T 2 ∇(1000212) ∇(31222330) ∇(12103120) ∇(03103232) T 3 ∇(1200210) ∇(22010122) ∇(20322221) ∇(03000210) T 4 ∇(2102203) ∇(23200210) ∇(20212300) ∇(22302203) Table 2: Definition of blocks A 0 , A 1 , A 2 , A 3 for the sequences S 2 , T 1 , T 2 , T 3 , T 4 . S 2 : A 0 A 1 A 2 A 3 B 0 B 1 B 2 B 3 C 0 C 1 C 2 C 3 D 0 E 0 0 9
A 0 A 1 A 2 A 3 B 0 B 1 B 2 B 3 C 0 C 1 C 2 C 3 D 0 E 0 0 7
T 2 : A 0 A 1 A 2 A 3 B 0 B 1 B 2 B 3 C 0 C 1 C 2 C 3 D 0 E 0 0 7
T 3 : A 0 A 1 A 2 A 3 B 0 B 1 B 2 B 3 C 0 C 1 C 2 C 3 D 0 E 0 0 7
A 0 A 1 A 2 A 3 B 0 B 1 B 2 B 3 C 0 C 1 C 2 C 3 D 0 E 0 0 7 8

The construction method

We now explain how our solution was constructed. Let m 1 , m 2 ≥ 2 be integers, with m 2 a multiple of m 1 . Consider the canonical quotient map

π : Z/m 2 Z -→ Z/m 1 Z. If ∇ is a Steinhaus triangle in Z/m 2 Z, then π(∇) is a Steinhaus triangle in Z/m 1 Z.
Moreover, if ∇ is balanced, then so is π(∇), as all fibers of π have the same cardinality. Thus, an obvious strategy for constructing balanced Steinhaus triangles in Z/m 2 Z consists in trying to lift to Z/m 2 Z known balanced Steinhaus triangles in Z/m 1 Z. This route is tricky, as illustrated by Theorems 3 and 4 below. It allowed us to solve the case m = 4 of Molluzzo's problem, but neither the case m = 6 nor the case m = 8 so far.

We shall restrict our attention to strongly balanced Steinhaus triangles. These were defined earlier in Z/4Z only. We now generalize them to Z/mZ for all even moduli. Definition 3. Let m ≥ 2 be an even modulus. Let S be a finite sequence of length n ≥ 0 in Z/mZ. The Steinhaus triangle ∇S is said to be strongly balanced if, for every 0 ≤ t ≤ n/(2m), the Steinhaus triangle ∇S[n -2mt] is balanced.

Note that this definition coincides with Definition 2 for m = 4. From now on, we assume that m 1 = m is an even number, and that m 2 = 2m 1 . The following notation helps to measure, roughly speaking, to what extent strong solutions in Z/mZ can be lifted to strong solutions in Z/2mZ. Notation 3. Let S be an infinite sequence in Z/mZ. For n ≥ 0, let a n (S) denote the number of sequences T in Z/2mZ, of length n, such that • ∇T is a strongly balanced Steinhaus triangle in Z/2mZ;

• π(T ) = S[n], the initial segment of length n in S.

We denote by G S (t) = ∞ n=0 a n (S)t n the generating function of the numbers a n (S).

We shall use this notation as a convenient device for exhibiting the value of the a n (S) for all n at once. For our present purposes, the favorable case occurs when G S (t) is an infinite series, not just a polynomial. Indeed, G S (t) is an infinite series if and only if there exists infinitely many strongly balanced Steinhaus triangles in Z/2mZ, which lift those in Z/mZ generated by initial segments of S.

From Z/2Z to Z/4Z

Here we set m = 2. Several types of balanced Steinhaus triangles of length 4k or 4k + 3 in Z/2Z are known. See [START_REF] Harborth | Solution of Steinhaus's problem with plus and minus signs[END_REF][START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF][START_REF] Eliahou | Zero-sum balanced binary sequences[END_REF]. We focus here on the ones given in [START_REF] Eliahou | On a problem of Steinhaus concerning binary sequences[END_REF], which have the added property of being strongly balanced.

Theorem 2 ([5]

). Let Q 1 , . . . , Q 4 and R 1 , . . . , R 12 be the following eventually periodic sequences of Z/2Z:

Q 1 = 0100(001001011100) ∞ , Q 2 = (010010000111) ∞ , Q 3 = 0101(011000011000) ∞ , Q 4 = 0101(101000101000) ∞ , R 1 = 001(010000100001) ∞ , R 2 = 0011110(001101010110) ∞ , R 3 = 010(000101000010) ∞ , R 4 = 0100001(010010111100001010111111) ∞ , R 5 = 0100001(100100001001) ∞ , R 6 = 0101011(010101100011) ∞ , R 7 = 0101011(010111111101011010011101) ∞ , R 8 = 010(101110110010) ∞ , R 9 = 100(001000010100) ∞ , R 10 = 1000010(110001101010) ∞ , R 11 = 1111101(011000110101) ∞ , R 12 = 111(110110000111) ∞ .
For all integers i, j, k such that 1 ≤ i ≤ 4, 1 ≤ j ≤ 12 and k ≥ 0, the Steinhaus triangles ∇Q i [4k] and ∇R j [4k + 3] are strongly balanced in Z/2Z.

Can we lift some initial segments of these sequences to sequences in Z/4Z which generate strongly balanced Steinhaus triangles? To answer this question, we have determined by computer the numbers a n (S) for all 16 sequences S in Theorem 2 and all n ≥ 1. In 11 out of the 16 cases, the numbers a n (S) turn out to vanish for all sufficiently large n, i.e. the series G S (t) is just a polynomial. But remarkably, in the remaining 5 cases, the a n (S) turn out to be ultimately periodic and non-vanishing, so that the infinite series G S (t) is actually a rational function. These 16 series are displayed below; the 5 infinite ones occur for the sequences Q The origin of our sequences S 1 , S 2 , T 1 , T 2 , T 3 , T 4 , solving the problem of Molluzzo in Z/4Z, is now clear. Indeed, they are lifts to Z/4Z of the 5 sequences Q 1 , Q 3 , R 3 , R 9 , R 10 in Z/2Z with G S (t) infinite. More precisely, we have π(S 1 ) = Q 1 , π(S 2 ) = Q 3 , π(T 1 ) = π(T 4 ) = R 3 , π(T 2 ) = R 10 , π(T 3 ) = R 9 , as the reader may readily check.

1 , Q 3 , R 3 , R 9 , R 10 . Theorem 3. The generating functions G S (t) of Q 1 , . . . , Q 4 and R 1 , . . . , R 12 are: G Q 1 (t) = 1 + 8t
, G R 1 (t) = 0, G R 2 (t) = 0, G R 3 (t) = 10t

From Z/4Z to Z/8Z

Having solved the problem in Z/4Z with Theorem 2, can we lift our solutions S 1 , S 2 , T 1 , T 2 , T 3 , T 4 to sequences in Z/8Z giving rise to infinitely many strongly balanced Steinhaus triangles? Unfortunately, the answer is no, as shown by the following computational result. 

Figure 1 :

 1 Figure 1: Defining A * B.

Theorem 4 .

 4 The generating functions G S (t) of S 1 , S 2 , T 1 , T 2 , T 3 , T 4 are polynomials only:G S 1 (t) = 1 + 16t

Table 1 :

 1 Multiplicities of 0, 1, 2, 3 in each building block of ∇S 1 [8k] multiset union of C 1 , C 2 , C 3 . That is, by definition we have

	7 20 16 15 16 17 15 17 16 20 19
	1 9 10 9 10 15 15 16 17 17 16 15 17 15 14
	2 9 11 8 11 14 16 15 14 17 17 15 16 14 17
	3 9 10 11 8 15 17 18 17 13 16 17 15 15 14

Table 3 :

 3 Multiplicities of 0, 1, 2, 3 in each building block of ∇S 2 [8k] and ∇T i [8k + 7] for i ∈ {1, 2, 3, 4}.

			12 7 15 13 19 18 14 16 15 17 13 13
	1 7	9	7	8 14 17 19 13 15 15 14 19 13 16
	2 7 10 8 12 13 19 13 15 12 16 18 14 14 14
	3 7	9	9	9 14 15 13 18 15 17 17 14 16 13

  8 + 34t 16 + 58t 24 + 84t 32 + 88t 40 + 86t 48 + 82t 56 + 60t 64 + 36t 72 + +34t 80 + 28t 88 + 16t 96 + 2t 104 1 -t 8 , G Q 2 (t) = 1 + 4t 8 + 14t 16 + 32t 24 + 36t 32 + 48t 40 + 44t 48 + 26t 56 + 22t 64 + 8t 72 + +6t 80 + 4t 88 + 2t 96 , G Q 3 (t) = 1 + 8t 8 + 28t 16 + 46t 24 + 78t 32 + 124t 40 + 118t 48 + 96t 56 + 78t 64 + 60t 72 + 28t 80 + 20t 88 + 14t 96 + 10t 104 + 4t 112 + 6t 120 + 4t 128 + 6t 136 + 4t 144 + 2t 152 + +2t 160 + 2t 168 + 2t 176 + 2t 184 + 2t 192 + 2t 200 + 4t 208 + 2t 216 1 -t 8 , G Q 4 (t) = 1 + 8t 8 + 26t 16 + 42t 24 + 66t 32 + 62t 40 + 52t 48 + 36t 56 + 26t 64 + 12t 72 + 6t 80

  7 + 38t 15 + 70t 23 + 88t 31 + 76t 39 + 54t 47 + 44t 55 + 28t 63 + 16t 71 + 8t 79 + +4t 87 + 4t 95 + 4t 103 + 4t 111 + 4t 119 + 6t 127 + 4t 135 + 6t 143 + 4t 151 1 -t 8 , G R 4 (t) = 10t 7 + 52t 15 + 102t 23 + 136t 31 + 152t 39 + 118t 47 + 108t 55 + 80t 63 + 60t 71 + +32t 79 + 20t 87 + 8t 95 + 2t 103 , G R 5 (t) = 10t 7 , G R 6 (t) = 10t 7 + 30t 15 + 66t 23 + 96t 31 + 96t 39 + 94t 47 + 66t 55 + 42t 63 + 24t 71 + 8t 79 + +2t 87 + 2t 95 , G R 7 (t) = 10t 7 + 60t 15 + 138t 23 + 204t 31 + 304t 39 + 266t 47 + 246t 55 + 148t 63 + 64t 71 + +36t 79 + 14t 87 + 10t 95 + 8t 103 , G R 8 (t) = 10t 7 , G R 9 (t) = 10t 7 + 42t 15 + 80t 23 + 130t 31 + 164t 39 + 174t 47 + 126t 55 + 68t 63 + 38t 71 + +20t 79 + 22t 87 + 12t 95 + 2t 103 + 2t 111 + 2t 119 + 2t 127 + 2t 135 + 2t 143 + 2t 151 + +2t 159 + 2t 167 + 2t 175 + 2t 183 + 2t 191 + 2t 199 + 4t 207 + 2t 215 1 -t 8 , G R 10 (t) = 10t 7 + 58t 15 + 98t 23 + 130t 31 + 160t 39 + 138t 47 + 132t 55 + 84t 63 + 64t 71 + +34t 79 + 14t 87 + 8t 95 + 6t 103 + 2t 111 + 2t 119 + 4t 127 + 2t 135 1 -t 8 , G R 11 (t) = 4t 7 + 16t 15 + 26t 23 + 32t 31 + 30t 39 + 30t 47 + 26t 55 + 12t 63 + 8t 71 + 2t 79 , G R 12 (t) = 4t 7 .

  16 + 46t 32 + 32t 48 + 14t 64 , G S 2 (t) = 1 + 22t 16 + 60t 32 + 56t 48 + 28t 64 + 6t 80 , G T 1 (t) = 14t 15 + 40t 31 + 40t 47 + 24t 63 + 8t 79 + 2t 95 + 2t 111 , G T 2 (t) = 30t 15 + 66t 31 + 76t 47 + 32t 63 + 12t 79 , G T 3 (t) = 14t 15 + 54t 31 + 42t 47 + 34t 63 + 12t 79 + 2t 95 , G T 4 (t) = 14t 15 + 54t 31 + 64t 47 + 40t 63 + 10t 79 + 2t 95 .

Summarizing, at this stage, it is not even known whether there exist infinitely many balanced Steinhaus triangles in Z/8Z. The picture is brighter here. Indeed, the first author has shown in [START_REF] Chappelon | Regular Steinhaus graphs and Steinhaus triangles in finite cyclic groups[END_REF][START_REF] Chappelon | On a problem of Molluzzo concerning Steinhaus triangles in finite cyclic groups[END_REF][START_REF] Chappelon | A universal sequence of integers generating balanced Steinhaus figures modulo an odd number[END_REF] that, for each odd modulus m, there are infinitely many balanced Steinhaus triangles in Z/mZ. Thus, the weak Molluzzo problem is affirmatively solved for all odd m, for m = 2 and here for m = 4. On the other hand, it is widely open for all even moduli m ≥ 6.

A weaker version of the problem

Somewhat similarly to the conjecture on the existence of Hadamard matrices of every order divisible by 4, the nature of the problem seems to lie less in the rarity of the solutions than in the difficulty of pinpointing easy-to-describe ones. For instance, in Z/6Z, there are exactly 94648 sequences of length 12 yielding a balanced Steinhaus triangle; up to automorphisms, they still total 23662 classes.

We note, finally, that all known solutions so far are by explicit constructions. However, the possibility of future nonconstructive existence results cannot be ruled out, for instance with the polynomial method of Alon-Tarsi.