Minimum-weight perfect matching for non-intrinsic distances on the line - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Minimum-weight perfect matching for non-intrinsic distances on the line

Résumé

Consider a real line equipped with a (not necessarily intrinsic) distance. We deal with the minimum-weight perfect matching problem for a complete graph whose points are located on the line and whose edges have weights equal to distances along the line. This problem is closely related to one-dimensional Monge-Kantorovich trasnport optimization. The main result of the present note is a "bottom-up'' recursion relation for weights of partial minimum-weight matchings.

Mots clés

Fichier principal
Vignette du fichier
JSSrecursion.pdf (157.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00564173 , version 1 (08-02-2011)
hal-00564173 , version 2 (26-03-2011)

Identifiants

Citer

Julie Delon, Julien Salomon, Andrei Sobolevski. Minimum-weight perfect matching for non-intrinsic distances on the line. 2011. ⟨hal-00564173v1⟩
346 Consultations
298 Téléchargements

Altmetric

Partager

More