Varieties of lattices with geometric descriptions
Résumé
A lattice L is spatial if every element of L is a join of completely join-irreducible elements of L (points), and strongly spatial if it is spatial and the minimal coverings of completely join-irreducible elements are well-behaved. Herrmann, Pickering, and Roddy proved in 1994 that every modular lattice can be embedded, within its variety, into an algebraic and spatial lattice. We extend this result to n-distributive lattices, for fixed n. We deduce that the variety of all n-distributive lattices is generated by its finite members, thus it has a decidable word problem. We prove that every modular (resp., n-distributive) lattice embeds within its variety into some strongly spatial lattice. Every lattice which is either algebraic modular spatial or bi-algebraic is strongly spatial. We also construct a lattice that cannot be embedded, within its variety, into any algebraic and spatial lattice. This lattice has a least and a largest element, and it generates a locally finite variety. Furthermore, it is join-semidistributive.
Origine | Fichiers produits par l'(les) auteur(s) |
---|