Vlasov equation for long-range interactions on a lattice - Archive ouverte HAL
Article Dans Une Revue Physical Review E : Statistical, Nonlinear, and Soft Matter Physics Année : 2011

Vlasov equation for long-range interactions on a lattice

Résumé

We show that, in the continuum limit, the dynamics of Hamiltonian systems defined on a lattice with long-range couplings is well described by the Vlasov equation. This equation can be linearized around the homogeneous state and a dispersion relation, that depends explicitly on the Fourier modes of the lattice, can be derived. This allows one to compute the stability thresholds of the homogeneous state, which turn out to depend on the mode number. When this state is unstable, the growth rates are also function of the mode number. Explicit calculations are performed for the $\alpha$-HMF model with $0 \leq \alpha <1$, for which the zero mean-field mode is always found to dominate the exponential growth. The theoretical predictions are successfully compared with numerical simulations performed on a finite lattice.
Fichier principal
Vignette du fichier
text.pdf (206.89 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00562245 , version 1 (02-02-2011)
hal-00562245 , version 2 (18-02-2011)
hal-00562245 , version 3 (21-02-2011)
hal-00562245 , version 4 (18-04-2011)

Identifiants

Citer

Romain Bachelard, F. Staniscia, Thierry Dauxois, Giovanni de Ninno, Stefano Ruffo. Vlasov equation for long-range interactions on a lattice. Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, 2011, 83, pp.061132. ⟨10.1103/PhysRevE.83.061132⟩. ⟨hal-00562245v4⟩
186 Consultations
190 Téléchargements

Altmetric

Partager

More