Reductions for branching coefficients - Archive ouverte HAL
Article Dans Une Revue Journal of Lie Theory Année : 2021

Reductions for branching coefficients

Résumé

Let $G$ be a connected reductive subgroup of a complex connected reductive group $\hat{G}$. We are interested in the branching problem. Fix maximal tori and Borel subgroups of $G$ and $\hat G$. Consider the cone $lr(G,\hat G)$ generated by the pairs $(\nu,\hat nu)$ of dominant characters such that $V_\nu^*$ is a submodule of $V_{\hat nu}$. It is known that $lr(G,\hat G)$ is a closed convex polyhedral cone. In this work, we show that every regular face of $lr(G,\hat G)$ gives rise to a {\it reduction rule} for multiplicities. More precisely, we prove that for $(\nu,\hat nu)$ on such a face, the multiplicity of $V_\nu^*$ in $V_{\hat nu}$ equal to a similar multiplicity for representations of Levi subgroups of $G$ and $\hat G$. This generalizes, by different methods, results obtained by Brion, Derksen-Weyman, Roth\dots

Mots clés

Fichier principal
Vignette du fichier
branchingreduction3.pdf (133.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00561627 , version 1 (01-02-2011)
hal-00561627 , version 2 (14-09-2012)

Identifiants

Citer

Nicolas Ressayre. Reductions for branching coefficients. Journal of Lie Theory, 2021, 31 (3), pp.885-896. ⟨hal-00561627v2⟩
92 Consultations
157 Téléchargements

Altmetric

Partager

More