Thermal analysis of aqueous micellar solutions Study of some structural transitions and of solute-surfactant complexes
Résumé
A micro differential temperature scanning calorimeter was used to characterize the structural changes between different types of micelles in aqueous solutions of ionic surfactants: anionic — sodium dodecylsulfate (SDS) — and cationic — hexadecyltrimethyl ammonium bromide (CTAB). Moreover, this technique allowed to confirm the existence of peculiar types of complexes between surfactants and selected solutes. In SDS solutions containing polyethylene glycols (PEG), the presence of complexes formed by small micelles adsorbed along the chains of the polymers was evidenced in the case of long enough polymer chains. In CTAB-phenol solutions, due to strong interactions between the polar heads of surfactant and phenol, molecular complexes of a composition of 1:1 molar ratio have been characterized. Depending on the ratio [phenol]/[CTAB], the rheological behaviour was found to change from fluid to viscoelastic and gel-like solutions, owing to the growth of elongated rod-like micelles. With entangled worm-like micelles, the important role of kinetics to reach the thermodynamic equilibria was shown.