Analysis of the upwind finite volume method for general initial and boundary value transport problems - Archive ouverte HAL
Article Dans Une Revue IMA Journal of Numerical Analysis Année : 2012

Analysis of the upwind finite volume method for general initial and boundary value transport problems

Résumé

This paper is devoted to the convergence analysis of the upwind finite volume scheme for the initial and boundary value problem associated to the linear transport equation in any dimension, on general unstructured meshes. We are particularly interested in the case where the initial and boundary data are in $L^\infty$ and the advection vector field $v$ has low regularity properties, namely $v\in L^1(]0,T[,(W^{1,1}(\O))^d)$, with suitable assumptions on its divergence. In this general framework, we prove uniform in time strong convergence in $L^p(\O)$ with $p<+\infty$, of the approximate solution towards the unique weak solution of the problem as well as the strong convergence of its trace. The proof relies, in particular, on the Friedrichs' commutator argument, which is classical in the renormalized solutions theory.
Fichier principal
Vignette du fichier
VFtransport_FB_2011.pdf (316.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00559586 , version 1 (25-01-2011)
hal-00559586 , version 2 (18-12-2011)

Identifiants

Citer

Franck Boyer. Analysis of the upwind finite volume method for general initial and boundary value transport problems. IMA Journal of Numerical Analysis, 2012, 32 (4), pp.1404-1439. ⟨10.1093/imanum/drr031⟩. ⟨hal-00559586v2⟩
569 Consultations
264 Téléchargements

Altmetric

Partager

More