Cube polynomial of Fibonacci and Lucas cube - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

Cube polynomial of Fibonacci and Lucas cube

Résumé

The cube polynomial of a graph is the counting polynomial for the number of induced $k$-dimensional hypercubes ($k\ge 0$). We determine the cube polynomial of Fibonacci cubes and Lucas cubes, as well as the generating functions for the sequences of these cubes. Several explicit formulas for the coefficients of these polynomials are obtained, in particular they can be expressed with convolved Fibonacci numbers. Zeros of the studied cube polynomials are explicitly determined. Consequently, the coefficients sequences of cube polynomials of Fibonacci and Lucas cubes are unimodal.
Fichier principal
Vignette du fichier
CubePolyRevised.pdf (186.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00558273 , version 1 (21-01-2011)
hal-00558273 , version 2 (05-10-2011)

Identifiants

  • HAL Id : hal-00558273 , version 2

Citer

Sandi Klavzar, Michel Mollard. Cube polynomial of Fibonacci and Lucas cube. 2011. ⟨hal-00558273v2⟩

Collections

CNRS FOURIER INSMI
190 Consultations
616 Téléchargements

Partager

More