A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule

Résumé

In this paper we prove an approximate controllability result for the bilinear Schrödinger equation. This result requires less restrictive non-resonance hypotheses on the spectrum of the uncontrolled Schrödinger operator than those present in the literature. The control operator is not required to be bounded and we are able to extend the controllability result to the density matrices. The proof is based on fine controllability properties of the finite dimensional Galerkin approximations and allows to get estimates for the $L^{1}$ norm of the control. The general controllability result is applied to the problem of controlling the rotation of a bipolar rigid molecule confined on a plane by means of two orthogonal external fields.
Fichier principal
Vignette du fichier
Resonantv8_8.pdf (385.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00557742 , version 1 (19-01-2011)
hal-00557742 , version 2 (21-01-2011)
hal-00557742 , version 3 (27-01-2011)
hal-00557742 , version 4 (09-02-2011)
hal-00557742 , version 5 (25-10-2011)

Identifiants

Citer

Ugo Boscain, Marco Caponigro, Thomas Chambrion, Mario Sigalotti. A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule. 2011. ⟨hal-00557742v4⟩
906 Consultations
479 Téléchargements

Altmetric

Partager

More