Improving Strategies via SMT Solving - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Improving Strategies via SMT Solving

Thomas Martin Gawlitza
  • Fonction : Auteur
  • PersonId : 889120
David Monniaux
Connectez-vous pour contacter l'auteur

Résumé

We consider the problem of computing numerical invariants of programs by abstract interpretation. Our method eschews two traditional sources of imprecision: (i) the use of widening operators for enforcing convergence within a finite number of iterations (ii) the use of merge operations (often, convex hulls) at the merge points of the control flow graph. It instead computes the least inductive invariant expressible in the domain at a restricted set of program points, and analyzes the rest of the code en bloc. We emphasize that we compute this inductive invariant precisely. For that we extend the strategy improvement algorithm of [Gawlitza and Seidl, 2007]. If we applied their method directly, we would have to solve an exponentially sized system of abstract semantic equations, resulting in memory exhaustion. Instead, we keep the system implicit and discover strategy improvements using SAT modulo real linear arithmetic (SMT). For evaluating strategies we use linear programming. Our algorithm has low polynomial space complexity and performs for contrived examples in the worst case exponentially many strategy improvement steps; this is unsurprising, since we show that the associated abstract reachability problem is Pi-p-2-complete.
Fichier principal
Vignette du fichier
main_article.pdf (288.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00555795 , version 1 (14-01-2011)

Identifiants

Citer

Thomas Martin Gawlitza, David Monniaux. Improving Strategies via SMT Solving. European symposium on programming (ESOP 2011), Mar 2011, Saarbrücken, Germany. pp.236-255, ⟨10.1007/978-3-642-19718-5_13⟩. ⟨hal-00555795⟩
518 Consultations
373 Téléchargements

Altmetric

Partager

More