The graphs with the max-Mader-flow-min-multiway-cut property - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

The graphs with the max-Mader-flow-min-multiway-cut property

Résumé

We are given a graph $G$, an independant set $\mathcal{S} \subset V(G)$ of \emph{terminals}, and a function $w:V(G) \to \mathbb{N}$. We want to know if the maximum $w$-packing of vertex-disjoint paths with extremities in $\mathcal{S}$ is equal to the minimum weight of a vertex-cut separating $\mathcal{S}$. We call \emph{Mader-Mengerian} the graphs with this property for each independant set $\mathcal{S}$ and each weight function $w$. We give a characterization of these graphs in term of forbidden minors, as well as a recognition algorithm and a simple algorithm to find maximum packing of paths and minimum multicuts in those graphs.
Fichier principal
Vignette du fichier
blocking-S-paths.pdf (159.26 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00554468 , version 1 (10-01-2011)

Identifiants

Citer

Guyslain Naves, Vincent Jost. The graphs with the max-Mader-flow-min-multiway-cut property. 2010. ⟨hal-00554468⟩
429 Consultations
163 Téléchargements

Altmetric

Partager

More