Brownian motion, reflection groups and Tanaka formula
Résumé
In the setting of finite reflection groups, we prove that the projection of a Brownian motion onto a closed Weyl chamber is another Brownian motion normally reflected on the walls of the chamber. Our proof is probabilistic and the decomposition we obtain may be seen as a multidimensional extension of Tanaka's formula for linear Brownian motion. The paper is closed with a description of the boundary process through the local times at zero of the distances from the initial process to the facets.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...