Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases - Archive ouverte HAL
Article Dans Une Revue Entropy Année : 2013

Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases

Résumé

The paper addresses image feature characterization and the structuring of large and heterogeneous image databases through the stochasticity or randomness appearance. Measuring stochasticity involves finding suitable representations that can significantly reduce statistical dependencies of any order. Wavelet packet representations provide such a framework for a large class of stochastic processes through an appropriate dictionary of parametric models. From this dictionary and the Kolmogorov stochasticity index, the paper proposes semantic stochasticity templates upon wavelet packet sub-bands in order to provide high level classification and content-based image retrieval. The approach is shown to be relevant for texture images.
Fichier principal
Vignette du fichier
entropy-15-04782.pdf (2.47 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00550318 , version 1 (26-12-2010)
hal-00550318 , version 2 (17-08-2013)
hal-00550318 , version 3 (04-11-2013)

Identifiants

Citer

Abdourrahmane Atto, Yannick Berthoumieu, Rémi Mégret. Stochasticity: A Feature for the Structuring of Large and Heterogeneous Image Databases. Entropy, 2013, 15 (11), pp.4782-4801. ⟨10.3390/e15114782⟩. ⟨hal-00550318v3⟩
455 Consultations
153 Téléchargements

Altmetric

Partager

More