Beyond kinetic relations
Résumé
We introduce the concept of kinetic or rate equations for moving defects representing a natural extension of the more conventional notion of a kinetic relation. Algebraic kinetic relations, widely used to model dynamics of dislocations, cracks and phase boundaries, link the instantaneous value of the velocity of a defect with an instantaneous value of the driving force. The new approach generalizes kinetic relations by implying a relation between the velocity and the driving force which is nonlocal in time. To make this relation explicit one may need to integrate a system of kinetic equations. We illustrate the difference between kinetic relation and kinetic equations by working out in full detail a prototypical model of an overdamped defect in a one-dimensional discrete lattice. We show that the minimal nonlocal kinetic description, containing now an internal time scale, is furnished by a system of two ordinary differential equations coupling the spatial location of defect with another internal parameter that describes configuration of the core region.