Improving the prediction accuracy of recurrent neural network by a PID controller. - Archive ouverte HAL
Article Dans Une Revue International Journal of Systems Applications, Engineering & Development. Année : 2010

Improving the prediction accuracy of recurrent neural network by a PID controller.

Résumé

In maintenance field, prognostic is recognized as a key feature as the prediction of the remaining useful life of a system which allows avoiding inopportune maintenance spending. Assuming that it can be difficult to provide models for that purpose, artificial neural networks appear to be well suited. In this paper, an approach combining a Recurrent Radial Basis Function network (RRBF) and a proportional integral derivative controller (PID) is proposed in order to improve the accuracy of predictions. The PID controller attempts to correct the error between the real process variable and the neural network predictions.
Fichier principal
Vignette du fichier
IJSAED_Ryad-Rafael.pdf (375.34 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00544722 , version 1 (08-12-2010)

Identifiants

  • HAL Id : hal-00544722 , version 1

Citer

Ryad Zemouri, Rafael Gouriveau, Paul Ciprian Patic. Improving the prediction accuracy of recurrent neural network by a PID controller.. International Journal of Systems Applications, Engineering & Development., 2010, 4 (2), pp.19-34. ⟨hal-00544722⟩
229 Consultations
1425 Téléchargements

Partager

More