Annealed and quenched fluctuations for ballistic random walks in random environment on Z - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Annealed and quenched fluctuations for ballistic random walks in random environment on Z

Résumé

We consider transient random walks in random environment on $\Z$ in the positive speed (ballistic) and critical zero speed regimes. A classical result of Kesten, Kozlov and Spitzer proves that the hitting time of level $n$, after proper centering and normalization, converges to a completely asymmetric stable distribution, but does not describe its scale parameter. Following [7], where the (non-critical) zero speed case was dealt with, we give a new proof of this result in the subdiffusive case that provides a complete description of the limit law. Furthermore, our proof enables us to give a description of the quenched distribution of hitting times. The case of Dirichlet environment turns out to be remarkably explicit.
Fichier principal
Vignette du fichier
stable_fluctu.pdf (519.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00543882 , version 1 (07-12-2010)
hal-00543882 , version 2 (01-04-2012)
hal-00543882 , version 3 (19-09-2013)

Identifiants

Citer

Nathanaël Enriquez, Christophe Sabot, Laurent Tournier, Olivier Zindy. Annealed and quenched fluctuations for ballistic random walks in random environment on Z. 2010. ⟨hal-00543882v1⟩

Collections

ENS-LYON ICJ
679 Consultations
246 Téléchargements

Altmetric

Partager

More