On Alexander–Conway polynomials of two-bridge links - Archive ouverte HAL
Article Dans Une Revue Journal of Symbolic Computation Année : 2015

On Alexander–Conway polynomials of two-bridge links

Résumé

We consider Conway polynomials of two-bridge links as Euler continuant polynomials. As a consequence, we obtain new and elementary proofs of classical Murasugi's 1958 alternating theorem and Hartley's 1979 trapezoidal theorem. We give a modulo 2 congruence for links, which implies the classical Murasugi's 1971 congruence for knots. We also give sharp bounds for the coefficients of Euler continuants and deduce bounds for the Alexander polynomials of two-bridge links. These bounds improve and generalize those of Nakanishi–Suketa's 1996. We easily obtain some bounds for the roots of the Alexander polynomials of two-bridge links. This is a partial answer to Hoste's conjecture on the roots of Alexander polynomials of alternating knots.
Fichier principal
Vignette du fichier
kpcp.pdf (185.86 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00538729 , version 1 (23-11-2010)
hal-00538729 , version 2 (02-07-2011)
hal-00538729 , version 3 (05-03-2012)

Identifiants

Citer

Pierre-Vincent Koseleff, Daniel Pecker. On Alexander–Conway polynomials of two-bridge links. Journal of Symbolic Computation, 2015, Effective Methods in Algebraic Geometry, Volume 68 (2), pp.215-229. ⟨10.1016/j.jsc.2014.09.011⟩. ⟨hal-00538729v3⟩
252 Consultations
367 Téléchargements

Altmetric

Partager

More