Periodic orbits and chain-transitive sets of C1-diffeomorphisms - Archive ouverte HAL
Article Dans Une Revue Publications mathematiques de l' IHES Année : 2006

Periodic orbits and chain-transitive sets of C1-diffeomorphisms

Résumé

We prove that the chain-transitive sets of C1-generic diffeomorphisms are approximated in the Hausdorff topology by periodic orbits. This implies that the homoclinic classes are dense among the chain-recurrence classes. This result is a consequence of a global connecting lemma, which allows to build by a C1-perturbation an orbit connecting several prescribed points. One deduces a weak shadowing property satisfied by C1-generic diffeomorphisms: any pseudo-orbit is approximated in the Hausdorff topology by a finite segment of a genuine orbit. As a consequence, we obtain a criterion for proving the tolerance stability conjecture in Diff^1(M).
Fichier principal
Vignette du fichier
shadowing.pdf (542.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00538119 , version 1 (21-11-2010)

Identifiants

Citer

Sylvain Crovisier. Periodic orbits and chain-transitive sets of C1-diffeomorphisms. Publications mathematiques de l' IHES, 2006, 104 (1), pp.87-141. ⟨10.1007/s10240-006-0002-4⟩. ⟨hal-00538119⟩
126 Consultations
715 Téléchargements

Altmetric

Partager

More