Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. - Archive ouverte HAL
Article Dans Une Revue Molecular Biology and Evolution Année : 2010

Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea.

Valérie de Crécy-Lagard
  • Fonction : Auteur
Céline Brochier-Armanet
Jaunius Urbonavicius
  • Fonction : Auteur
Bernard Fernandez
  • Fonction : Auteur
Gabriela Phillips
  • Fonction : Auteur
Benjamin Lyons
  • Fonction : Auteur
Akiko Noma
  • Fonction : Auteur
Sophie Alvarez
  • Fonction : Auteur
Louis Droogmans
  • Fonction : Auteur
J. Armengaud

Résumé

Wyosine (imG) and its derivatives such as wybutosine (yW) are found at position 37 of phenylalanine-specific transfer RNA (tRNA(Phe)), 3' adjacent to the anticodon in Eucarya and Archaea. In Saccharomyces cerevisiae, formation of yW requires five enzymes acting in a strictly sequential order: Trm5, Tyw1, Tyw2, Tyw3, and Tyw4. Archaea contain wyosine derivatives, but their diversity is greater than in eukaryotes and the corresponding biosynthesis pathways still unknown. To identify these pathways, we analyzed the phylogenetic distribution of homologues of the yeast wybutosine biosynthesis proteins in 62 archaeal genomes and proposed a scenario for the origin and evolution of wyosine derivatives biosynthesis in Archaea that was partly experimentally validated. The key observations were 1) that four of the five wybutosine biosynthetic enzymes are ancient and may have been present in the last common ancestor of Archaea and Eucarya, 2) that the variations in the distribution pattern of biosynthesis enzymes reflect the diversity of the wyosine derivatives found in different Archaea. We also identified 7-aminocarboxypropyl-demethylwyosine (yW-86) and its N4-methyl derivative (yW-72) as final products in tRNAs of several Archaea when these were previously thought to be only intermediates of the eukaryotic pathway. We confirmed that isowyosine (imG2) and 7-methylwyosine (mimG) are two archaeal-specific guanosine-37 derivatives found in tRNA of both Euryarchaeota and Crenarchaeota. Finally, we proposed that the duplication of the trm5 gene in some Archaea led to a change in function from N1 methylation of guanosine to C7 methylation of 4-demethylwyosine (imG-14).

Dates et versions

hal-00534355 , version 1 (09-11-2010)

Identifiants

Citer

Valérie de Crécy-Lagard, Céline Brochier-Armanet, Jaunius Urbonavicius, Bernard Fernandez, Gabriela Phillips, et al.. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea.. Molecular Biology and Evolution, 2010, 27 (9), pp.2062-77. ⟨10.1093/molbev/msq096⟩. ⟨hal-00534355⟩
125 Consultations
0 Téléchargements

Altmetric

Partager

More