Mass transportation with LQ cost functions - Archive ouverte HAL
Article Dans Une Revue Acta Applicandae Mathematicae Année : 2011

Mass transportation with LQ cost functions

Résumé

We study the optimal transport problem in the Euclidean space where the cost function is given by the value function associated with a Linear Quadratic minimization problem. Under appropriate assumptions, we generalize Brenier's Theorem proving existence and uniqueness of an optimal transport map. In the controllable case, we show that the optimal transport map has to be the gradient of a convex function up to a linear change of coordinates. We give regularity results and also investigate the non-controllable case.
Fichier principal
Vignette du fichier
HPR_DEF.pdf (180.02 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00534083 , version 1 (08-11-2010)
hal-00534083 , version 2 (19-05-2011)

Identifiants

Citer

Ahed Hindawi, Ludovic Rifford, Jean-Baptiste Pomet. Mass transportation with LQ cost functions. Acta Applicandae Mathematicae, 2011, 113 (2), pp.215-229. ⟨10.1007/s10440-010-9595-1⟩. ⟨hal-00534083v2⟩
306 Consultations
145 Téléchargements

Altmetric

Partager

More