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Abstract

We study the optimal transport problem in the Euclidean space where the cost
function is given by the value function associated with a Linear Quadratic minimiza-
tion problem. Under appropriate assumptions, we generalize Brenier’s Theorem prov-
ing existence and uniqueness of an optimal transport map. In the controllable case,
we show that the optimal transport map has to be the gradient of a convex function
up to a linear change of coordinates. We give regularity results and also investigate
the non-controllable case.

1 Introduction

The optimal transport problem can be stated as follows: given two probability measures
µ0 and µ1, defined on measurable spaces X and Y respectively and a cost function

c : X × Y −→ IR ∪ {+∞}

find a measurable map
T : X −→ Y

which pushes forward µ0 to µ1, that is

T♯µ0 = µ1 (i.e. µ1(B) = µ0
(

T−1(B)
)

for all B ⊂ Y measurable),

and which minimizes the transportation cost

costc(T ) :=

∫

X

c(x, T (x)) dµ0(x).

When the transport condition T♯µ0 = µ1 is satisfied, we say that T is a transport map,
and if T minimizes also the cost, that is if

costc(T ) = min
S♯µ0=µ1

{

costc(S)
}

then we call it an optimal transport map. Since the seminal famous paper by Gaspard
Monge in 1781 [12], there was a revival of interest in mass transportation in the nineties.
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In 1987 [3, 4], Brenier proved an existence and uniqueness result of optimal transport
maps for the cost c(x, y) = |x − y|2 in IRn and showed that any such optimal transport
map is indeed the gradient of a convex function. Since then, people extended the theory
to other costs functions in IRn or to other types of spaces (see [15]).

The aim of this paper is to study existence, uniqueness, and regularity of optimal
transport maps for costs functions coming for LQ minimization problems in IRn. Let us
consider a linear control system of the form

ẋ = Ax+Bu (1.1)

where the state x belongs to IRn, the control u belongs to IRm and A,B are n×n and n×m
matrices respectively. For every initial state x ∈ IRn and every control u ∈ L2

(

[0, 1]; IRm
)

,
we denote by x(·;x, u) : [0, 1] → IRn the unique solution to the Cauchy problem

{

ẋ(t) = Ax(t) +Bu(t) for a.e. t ∈ [0, 1],
x(0) = x.

(1.2)

Let us in addition consider a quadratic Lagrangian of the form

L(x, u) =
1

2
〈x,Wx〉+

1

2
〈u,Uu〉, (1.3)

where W is a n× n symmetric non-negative matrix and U is a m×m symmetric positive
definite matrix. The cost c : IRn × IRn → [0,+∞] associated with (1.1) and (1.3) is given
by

c(x, y) := inf

{
∫ 1

0
L(x(t;x, u), u(t))dt |u ∈ L2

(

[0, 1]; IRm
)

s.t. x(1;x, u) = y

}

, (1.4)

where we set c(x, y) = +∞ if there is no u ∈ L2
(

[0, 1]; IRm
)

such that x(1;x, u) = y.
We notice that LQ costs as above include as a particular case the Euclidean cost

1/2|x − y|2 by taking B = In, U = In, A = 0, W = 0 . Costs coming from optimal
control have already been studied in [1] (see also [6]). However, this reference does not
give regularity results or properties relating the transport map with the gradient of a
convex function. Furthermore, the study of a cost that is finite only for points lying in
the same leaf of a foliation, like in the non-controllable case is also original.

The structure of the paper is the following. Our results are stated in Section 2. In
Section 3, we introduce some preliminaries in optimal transport theory concerned with
Kantorovitch duality. In Sections 4 and 5, we provide the proofs of our results. Then,
we present some examples in Section 6. Finally in Section 7, we conclude with several
remarks about our results.

2 Main results

2.1 Preliminaries on linear systems

Consider system (1.1) and let V be the smallest linear subspace of IRn that contains the
image of the operator B : IRm → IRn and is invariant by A, or, more explicitly,

V = SpanIR

{

B,AB,A2B, . . . , An−1B
}

⊂ IRn , d = dimV. (2.1)
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The well-known Kalman criterion states that system (1.1) is controllable if and only if d;
this is stated below with a description of the situation where d < n. This decomposition
can be found for instance in [13, Lemma 3.3.3].

Proposition 2.1. Let x, y be in IRn. There exists a control u ∈ L2
(

[0, 1]; IRm
)

such that
x(t;x, u) = y if and only if eAx − y ∈ V (i.e. y lies in the affine subspace eAx + V ).
In particular it exists for all x, y if d; the system –or the pair (A,B)– is then called
controllable.

If d < n, after a linear change of coordinates in IRn, the control system (1.1) has the
following form:

ẋ =

(

ẋ1
ẋ2

)

=

(

A1 A3

0 A2

)(

x1
x2

)

+

(

B1u
0

)

, (2.2)

where the state x is partitioned into two blocks x1 and x2 of dimension d and n − d
respectively and A1, A2, A3, B1 are d × d, d × n − d, n − d × n − d and d ×m matrices
respectively, such that the pair (A1, B1) is controllable.

2.2 The controllable case

The following result of existence, uniqueness and regularity follows easily from the classical
theory of optimal mass transportation. Throughout the paper, M∗ denotes the transpose
of the matrix M .

Theorem 2.2. Assume that the linear control system (1.1) is controllable. Then there
are symmetric positive definite n × n matrices D and F , and an invertible n × n matrix
E such that

c(x, y) =
1

2
〈x,D x〉 − 〈x,E y〉+

1

2
〈y, F y〉 ∀x, y ∈ IRn. (2.3)

Let µ0, µ1 be two compactly supported probability measures on IRn. Assume that µ0 is
absolutely continuous with respect to the Lebesgue measure Ln. Then, there is existence
and uniqueness of an optimal transport map T : IRn → IRn. Such a map is characterized
by the existence of a convex function ϕ : IRn → IR such that

T (x) = E−1 ∇ϕ(x) for a.e. x ∈ IRn. (2.4)

If in addition, µ0, µ1 are associated with probability densities f0, f1 on supp(µ0) and
supp(µ1) respectively, with f0 and f1 bounded from below and above, and if supp(µ0)
is connected and supp(µ1) convex, then T is continuous.

We postpone several remarks concerning Theorem 2.2 to Section 7.

2.3 The non-controllable case

Here d < n in (2.1), hence the evolution of the (n − d)-dimensional x2 is totally fixed
by (2.2) and c(x, y) will obviously be infinite for almost all pairs x, y: these such that
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y2 6= eA2x2. A result similar to the above theorem requires first there exists at least one
transport map with finite cost, i.e.

inf
S♯µ0=µ1

{

costc(S) :=

∫

IRn
c(x, S(x)) dµ0(x),

}

< +∞. (2.5)

Let π2 : IRn → IRn−d be the projection on the second block in the coordinates of (2.2):
π2(x) = x2 (it is also the projection on the quotient IRn/V ).

Theorem 2.3. Let µ0 and µ1 be compactly supported probability measures with continuous
densities f0, f1 (µ0 = f0L

n, µ1 = f1L
n). There exists a transport map with finite cost (2.5)

if and only if

(π2)♯µ1 =
(

eA2 ◦ π2
)

♯
µ0 . (2.6)

If this is satisfied, then there exists a unique optimal transport map T : IRn → IRn.
Moreover, if both densities f0, f1 are bounded from below and above on supp(µ0) and
supp(µ1) respectively, and if supp(µ0) and supp(µ1) are both convex, then T is continuous.

Again, remarks concerning Theorem 2.3 are postponed to Section 7.

3 Preliminaries in optimal transport theory

Given two probability measures µ0, µ1 on IRn and a cost function c : IRn × IRn → [0,+∞],
we are looking for a transport map T : IRn → IRn which minimizes the transportation
cost

∫

IRn c(x, T (x)) dµ0. The constraint T#µ0 = µ1 being highly non-linear, the optimal
transport problem is quite difficult from the viewpoint of calculus of variation. The major
advance on this problem was due to Kantorovich, who proposed in [8, 9] a notion of weak
solution of the optimal transport problem. He suggested to look for plans instead of
transport maps, that is probability measures γ in IRn × IRn whose marginals are µ0 and
µ1, that is

(π1)♯γ = µ0 and (π2)♯γ = µ1,

where π1 : IRn × IRn → IRn are the canonical projections on the first and second vari-
able respectively. Denoting by Π(µ0, µ1) the set of plans, the new minimization problem
becomes the following:

C
(

µ0, µ1
)

= min
γ∈Π(µ0,µ1)

{
∫

IRn×IRn
c(x, y) dγ(x, y)

}

. (3.1)

If γ is a minimizer for the Kantorovich formulation, we say that it is an optimal plan.
Due to the linearity of the constraint γ ∈ Π(µ0, µ1), it is simple, using weak topologies, to
prove existence of solutions to (3.1) as soon as c is lower semi-continuous (see for instance
[15]). The connection between the formulation of Kantorovich and that of Monge can be
seen by noticing that any transport map T induces the plan defined by (Id×T )♯µ0 which
is concentrated on the graph of T . Thus, the problem of showing existence of optimal
transport maps can be reduced to prove that an optimal transport plan is concentrated
on a graph. Moreover, if one can show that any optimal plan is concentrated on a graph,
since γ1+γ2

2 is optimal if so are γ1 and γ2, uniqueness of the transport map easily follows.
The following definition is exactly [15, Definition 5.2]:
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Definition 3.1. Let c : IRn × IRn → [0,∞]. A function ψ : IRn → IR∪{+∞} is said to be
c-convex if it is not identically +∞ and there exists a function ζ : IRn → IR ∪ {−∞,+∞}
such that

ψ(x) = sup
y∈IRn

(

ζ(y)− c(x, y)
)

∀x ∈ IRn.

Then its c-transform is the function ψc defined by

ψc(y) = inf
x∈IRn

(

ψ(x) + c(x, y)
)

∀y ∈ IRn,

and its c-subdifferential is the set defined by

∂cψ :=
{

(x, y) ∈ IRn × IRn |ψc(y)− ψ(x) = c(x, y)
}

.

Moreover, the c-subdifferential of ψ at x ∈ IRn is

∂cψ(x) :=
{

y ∈ IRn | (x, y) ∈ ∂cψ
}

,

or equivalently
ψ(x) + c(x, y) ≤ ψ(z) + c(z, y) ∀z ∈ IRn.

The functions ψ and ψc are said to be c-conjugate.

Let us denote by Pc(IR
n) the set of compactly supported probability measures. From

now on, supp(µ0) and supp(µ1) will denote the supports of µ0 and µ1 respectively, i.e.
the smallest closed sets on which µ0 and µ1 are respectively concentrated. Kantorovitch
duality can be stated as follows (see [15, Theorem 5.10]):

Theorem 3.2. Let µ0, µ1 ∈ Pc(IR
n) and c : IRn × IRn → [0,∞) be a lower continuous

function. Then there exists a c-convex function ψ : IRn → IR such that the following
holds: a transport plan γ ∈ Π(µ0, µ1) is optimal if and only if γ(∂cψ) = 1 (that is, γ is
concentrated on the c-subdifferential of ψ). Moreover ψ can be chosen such that

ψ(x) = sup
y∈supp(µ1)

{ψc(y)− c(x, y)} ∀x ∈ IRn, (3.2)

ψc(y) = inf
x∈supp(µ0)

{ψ(x) + c(x, y)} ∀y ∈ IRn. (3.3)

By the above theorem we see that, in order to prove existence and uniqueness of
optimal transport maps, it suffices to prove that there exist two Borel sets Z0, Z1 ⊂ IRn,
with µ0(Z0) = µ1(Z1) = 1, such that and ∂cψ is a graph inside Z0 × Z1 (or equivalently
that ∂cψ(x) ∩ Z1 is a singleton for all x ∈ Z0).

4 Proof of Theorem 2.2

First, we prove that (2.3) holds. This is not new, but the formulas are not given in
textbooks in extenso. The case W = 0 is more classical and one may find, for instance in
[11] the expression of c in that case:

c(x, y) = 〈x− e−Ay , G−1(x− e−Ay)〉 with G =

∫ 1

0
eτA

∗

BU−1B∗eτAdτ (4.1)
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where the controllability Grammian G is positive definite because the system is control-
lable. This is indeed of the form (2.3). Let us derive the general form from the classical
linear Pontryagin Maximum principle (see for instance the same reference).

The pseudo Hamiltonian H0 : IRn × IRn × IRm → IR associated with the optimization
problem under study is given by

H0(x, p, u) := 〈p,Ax+Bu〉 −
1

2
〈x,Wx〉 −

1

2
〈u,Uu〉, (4.2)

the control u that maximizes this expression for each (p, x) is given by

u = U−1B∗p (4.3)

and the Hamiltonian H : IRn × IRn → IR, defined as H(x, p) = max {H0(x, p, u) |u ∈ IRm}
is given by

H(x, p) = 〈p,Ax〉 −
1

2
〈x,Wx〉+

1

2
〈p,BU−1B∗p〉. (4.4)

Therefore the Hamiltonian differential equation ẋ = ∂H/∂p, ṗ = −∂H/∂x associated to
our minimization problem is given by

(

ẋ
ṗ

)

=

(

A BU−1B∗

W −A∗

)(

x
p

)

(4.5)

Denote by R(·) : [0, 1] →M2n(IR) the fundamental solution to the Cauchy problem

Ṙ(t) =

(

A BU−1B∗

W −A∗

)

R(t) ∀t ∈ [0, 1], R(0) = I2n, (4.6)

and write it as

R(t) =

(

R1(t) R2(t)
R3(t) R4(t)

)

∀t ∈ [0, 1],

where Ri(·) is a n× n matrix for i = 1, · · · 4. For every x ∈ IRn fixed, denote by expx the
mapping from IRn to IRn which sends via the Hamiltonian vector field the initial adjoint
vector p ∈ IRn to the final state x(1), that is

expx(p) := R1(1)x+R2(1)p ∀p ∈ IRn. (4.7)

Controllability of the system (1.1) implies that the affine mapping expx is onto, and hence
a bijection. Indeed, there is, for any x, y ∈ IRn, (at least) one control u ∈ L2

(

[0, 1]; IRm
)

which minimizes the cost
∫ 1

0
L(x(t;x, u), u(t))dt

among all controls steering x to y in time 1; thanks to the linear maximum principle,
there corresponds to each minimizing control a p ∈ IRn such that expx(p) = y. Hence the
matrix R2(t) is invertible for all t.

Given x and y in IRn, the cost between x and y is given by

c(x, y) =

∫ 1

0

1

2
〈x(t),Wx(t)〉+

1

2
〈p(t), BU−1B∗p(t)〉dt,
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where
(

x(·), p(·)
)

: [0, 1] → IRn × IRn is the solution to the Hamiltonian system (4.5)
satisfying

x(0) = x and expx
(

p(0)
)

= y.

Set p := p(0), that is

p = R2(1)
−1
(

y −R1(1)x
)

. (4.8)

We deduce easily that c is a smooth function of the form

c(x, y) =
1

2
〈x,Q1x〉+ 〈x,Cp〉+

1

2
〈p,Q2p〉 ∀x, y ∈ IRn, (4.9)

where both Q1, Q2 are non-negative symmetric n× n matrices given by

Q1 :=

∫ 1

0

(

R1(t)
∗WR1(t) +R3(t)

∗BU−1B∗R3(t)
)

dt,

Q2 :=

∫ 1

0

(

R2(t)
∗WR2(t) +R4(t)

∗BU−1B∗R4(t)
)

dt,

and where C is the n× n matrix given by

C :=

∫ 1

0

(

R1(t)
∗WR2(t) +R3(t)

∗BU−1B∗R4(t)
)

dt.

Let x, y ∈ IRn and u ∈ L2
(

[0, 1]; IRm
)

a control minimizing c(x, y) be fixed. For every
control v ∈ L2

(

[0, 1], IRm
)

, denote by y(·; y, v) : [0, 1] → IRn the unique solution to the
Cauchy problem

{

ẏ(t) = Ay(t) +Bv(t) for a.e. t ∈ [0, 1],
y(1) = y.

By definition of the cost c, there holds

∫ 1

0
L(y(t; y, v), v(t))dt − c

(

y(0; y, v), y
)

≥ 0 ∀v ∈ L2
(

[0, 1], IRm
)

.

Moreover, there is equality in the above inequality whenever v = u. Thanks to the linear
maximum principle, since the cost c is smooth, this means that

y = expx(p) with p = −∇xc(x, y).

Computing ∇xc(x, y) by differentiating (4.9)-(4.8) with respect to the variable x yields

Q1x+ Cp−R1(1)
∗
(

R2(1)
−1
)∗(

C∗x+Q2p
)

= −p,

and finally (recall that Q1 is symmetric) :

C = −In +R1(1)
∗
(

R2(1)
−1
)∗
Q2, Q1 = R1(1)

∗
(

R2(1)
−1
)∗
C∗ = CR2(1)

−1R1(1). (4.10)

Plugging this and (4.8) into (4.9) yields the expression (2.3) for c(x, y) with

D = R2(1)
−1R1(1) , E = R2(1)

−1 , F = (R2(1)
−1)∗Q2R2(1)

−1 , (4.11)
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whereD is symmetric because (4.10) impliesQ1 = −E+E∗Q2E and Q1, Q2 are symmetric;
Positive definiteness of D and F may be deduced from the fact that there is no solution
of (1.1) driving 0 to a nonzero y or a nonzero x to 0 in finite time with a zero cost.

Let us now show the existence and uniqueness of an optimal transport map. Let
µ0, µ1 be two compactly supported probability measures in IRn and assume that µ0 is
absolutely continuous with respect to the Lebesgue measure. Let ψ, φ := ψc : IRn → IR
be the Kantorovitch potentials given by Theorem 3.2 (note that c is non-negative valued).
First, since c is smooth and both sets supp(µ0), supp(µ1) are assumed to be compact,
(3.2)-(3.3) imply that both potentials ψ, φ are locally Lipschitz. Therefore, thanks to
Rademacher’s Theorem and the fact that µ0 is absolutely continuous with respect to
the Lebesgue measure, ψ is differentiable µ0-almost everywhere. Let x ∈ supp(µ0) be a
differentiability point of ψ. Let y ∈ supp(µ1) be such that

φ(y)− ψ(x) = c(x, y),

and u ∈ L2
(

[0, 1], IRm
)

be a control minimizing

c(x, y) = inf

{
∫ 1

0
L(x(t;x, v), v(t))dt | v ∈ L2

(

[0, 1]; IRm
)

s.t. x(1;x, v) = y

}

.

Then we have
∫ 1

0
L(y(t; y, v), v(t))dt ≥ c

(

y(0; y, v), y
)

≥ φ(y)− ψ
(

y(0; y, v)
)

∀v ∈ L2
(

[0, 1]; IRm
)

,

with equality if v = u. As above, this implies that

y = expx(p) with p = ∇ψ(x).

This shows that y is uniquely determined for every differentiability point of φ and in turn
proves existence and uniqueness of an optimal measurable transport map x 7→ y. Note
that the potential ψ can be written as follows:

ψ(x) = sup
y∈supp(µ1)

{φ(y)− c(x, y)}

= −
1

2
〈x,D x〉+ sup

y∈supp(µ1)

{

〈x,E y〉 −
1

2
〈y, F y〉+ φ(y)

}

.

This shows that the function ϕ : IRn → IR defined by

ϕ(x) := ψ(x) +
1

2
〈x,D x〉 ∀x ∈ IRn,

is convex (as the sup of a family of convex functions) while, for almost every x ∈ supp(µ0),
deriving the expression of expx(p) from (4.7) and (4.11),

T (x) = expx
(

∇ψ(x)
)

= E−1
(

Dx+∇ψ(x)
)

= E−1∇ϕ(x) .

It remains to show that under additional assumptions, T is continuous. One obviously
has ∇ϕ(x) = E T (x) for all x; it is clear that this and T♯µ0 = µ1 imply (∇ϕ)♯µ0 = µ̂1 for
the measure µ̂1 defined by

µ̂1(A) = µ1

(

{

E−1x |x ∈ A
}

)
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for every Borel set A ⊂ IRn (µ̂1 is the pushforward of µ1 by the map x 7→ Ex). Since ϕ is
convex, ∇ϕ is then the optimal transport map from µ0 to µ̂1 for the cost ĉ(x, y) =

1
2 |x−y|

2.
This implies the continuity of ∇ϕ —hence of T— according to [15, Theorem 12.50 (i)]
which asserts the following: if µ̂0, µ̂1 are two compactly supported probability measures in
IRn associated with densities f̂0, f̂1 which are bounded from below and above on supp(f̂0)
and supp(f̂1) respectively, and if supp(f̂0) is connected and supp(f̂1) is convex, then the
optimal transport map T̂ : IRn → IRn from µ̂0 to with respect to the Euclidean quadratic
cost ĉ(x, y) = 1

2 |x − y|2 is continuous. Take µ̂1 defined above and set µ̂0 = µ0; they do
satisfy these assumptions for µ0 and µ1 and applying an invertible linear map does not
change convexity of the support of a density, and we just proved that T̂ is ∇ϕ with the
same ϕ as above.

5 Proof of Theorem 2.3

Let us first treat the case d = 0 separately. According to (2.1), either there is no control
(m = 0) or the matrix B is zero; in both cases the system reads ẋ = Ax and

c(x, y) =

{

1
2

∫ 1
0

〈

etA x,WetA x
〉

dt if y = eAx ,
+∞ otherwise.

Then there is only one map S such that costc(S) <∞, given by S(x) = eAx for all x, the
compatibility on measures is µ1 = S♯µ0 with this precise S, and the result is proved in the
case d = 0.

From now on, we assume that d ∈ {1, · · · , n−1}, i.e. none of the two blocks in (2.2) is
void (d ≥ 1, n−d ≥ 1). For every x =

(

x1, x2
)

∈ IRd×IRn−d = IRn and u ∈ L2
(

[0, 1]; IRm
)

,
the solution x(·;x, u) : [0, 1] → IRn to the Cauchy problem (1.2) with the decomposition
given by (2.2) satisfies

x(t;x, u) =

(

x1(t;x, u)
x2
(

t;x2
)

)

=

(

etA1x1 + etA1

∫ t

0 e
−sA1

[

A3e
sA2x2 +B1u(s)

]

ds
etA2x2

)

, (5.1)

for every t ∈ [0, 1]. Denote by x̄1(·) = x̄1
(

·;x1, u
)

: [0, 1] → IRd the solution to the Cauchy
problem

{

˙̄x1(t) = A1x̄1(t) +B1u(t) for a.e. t ∈ [0, 1],
x̄1(0) = x1.

(5.2)

Then we have
x1
(

t;x, u
)

= x̄1
(

t;x1, u
)

+G(t)x2 ∀t ∈ [0, 1],

where G : [0, 1] →Md,n−d(IR) is defined by

G(t) := etA1

∫ t

0
e−sA1A3e

sA2ds ∀t ∈ [0, 1].

Therefore we have for almost every t ∈ [0, 1],

L
(

x(t;x, u), u(t)
)

=
1

2
〈x(t;x, u),Wx(t;x, u)〉 +

1

2
〈u(t), Uu(t)〉

=
1

2

〈

x̄1
(

t;x1, u
)

,W1 x̄1
(

t;x1, u
)〉

+
1

2
〈u(t), Uu(t)〉

+
〈

x̄1
(

t;x1, u
)

,X
(

t;x2
)〉

+ l
(

t;x2
)

,
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where the symmetric matrix W is decomposed, in the coordinates of (2.2) as

W =

(

W1 W3

W3
∗ W2

)

with W1 and W2 positive definite d × d and n − d × n − d matrices respectively, W3 a
d× n− d matrix, and

X
(

t;x2
)

= W1G(t)x2 +W3 x2
(

t;x2
)

,

l
(

t;x2
)

=
1

2

〈(

G(t)x2
x2
(

t;x2
)

)

,

(

W1 W3

W3
∗ W2

)(

G(t)x2
x2
(

t;x2
)

)〉

.

In conclusion, we have for every x =
(

x1, x2
)

, y =
(

y1, y2
)

∈ IRn,

c(x, y) =

{

c̄x2

(

x1, y1 −G(1)x2
)

+
∫ 1
0 l
(

t;x2
)

dt if y2 = eA2x2
+∞ otherwise,

(5.3)

where the cost c̄x2
: IRd × IRd → [0,+∞) is defined by

c̄x2

(

x1, z1
)

:=

inf

{
∫ 1

0
L̄x2

(

t, x̄1(t;x1, u), u(t)
)

dt |u ∈ L2
(

[0, 1]; IRm
)

s.t. x̄1
(

1;x1, u
)

= z1

}

, (5.4)

for any x1, z1 ∈ IRd, and where the Lagrangian L̄x2
: IR× IRd × IRm → [0,+∞) is defined

by

L̄x2

(

t, z, u
)

:=
1

2
〈z,W1 z〉+

1

2
〈u(t), Uu(t)〉 +

〈

z,X
(

t;x2
)〉

. (5.5)

We proceed now as in the proof of Theorem 2.2. Let x2 ∈ IRn−d be fixed, the pseudo
Hamiltonian H0 : IR× IRd × IRd × IRm → IR associated with the cost c̄x2

is given by

H0(t, z, p, u) := 〈p,A1z +B1u〉 −
1

2
〈z,W1 z〉 −

1

2
〈u,U u〉 −

〈

z,X
(

t;x2
)〉

. (5.6)

Then ∂H0

∂u
= 0 yields u = U−1B∗

1p and the Hamiltonian H : IR × IRd × IRd → IR is given
by

H(t, z, p) = max {H0(t, z, p, u) |u ∈ IRm}

= 〈p,A1 z〉 −
1

2
〈z,W1 z〉+

1

2

〈

p,B1U
−1B∗

1p
〉

−
〈

z,X
(

t;x2
)〉

.

Therefore the Hamiltonian system associated to our minimization problem is given by

{

ż = A1z +B1U
−1B∗

1p
ṗ = −A∗

1p+W1z +X
(

t;x2
)

.
(5.7)

Denote by R(·) : [0, 1] →M2d(IR) the fundamental solution to the Cauchy problem

Ṙ(t) =

(

A1 B1U
−1B∗

1

W1 −A∗
1

)

R(t) ∀t ∈ [0, 1], R(0) = I2d, (5.8)
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and write it as

R(t) =

(

R1(t) R2(t)
R3(t) R4(t)

)

∀t ∈ [0, 1],

where Ri(·) is a d × d matrix for i = 1, · · · 4. Any solution
(

z(·), p(·)
)

: [0, 1] → IRd × IRd

of (5.7) with z(0) = z, p(0) = p can be written as

{

z(t) = R1(t)z +R2(t)p+ z̄x2
(t)

p(t) = R3(t)z +R4(t)p+ p̄x2
(t)

∀t ∈ [0, 1],

where
(

z̄x2
(·), p̄x2

(·)
)

: [0, 1] → IRd × IRd of (5.7) satisfying z̄x2
(0) = 0, p̄x2

(0) = 0. For

every x1 ∈ IRd, the mapping expx1
: IRd → IRd defined by

expx1
(p) := R1(1)x1 +R2(1)p + z̄x2

(1) ∀p ∈ IRd,

is an affine bijection. For every x1, z1, p ∈ IRd with z1 = expx1
(p), there holds

c̄x2

(

x1, z1
)

=
1

2
〈x1, Q1 x1〉+

1

2
〈p,Q2 p〉+ 〈x1, C p〉+ 〈x1, vx2

〉+ 〈p,wx2
〉+ kx2

, (5.9)

where both Q1, Q2 are non-negative symmetric d× d matrices given by

Q1 :=

∫ 1

0

(

R1(t)
∗W1R1(t) +R3(t)

∗B1U
−1B∗

1R3(t)
)

dt,

Q2 :=

∫ 1

0

(

R2(t)
∗W1R2(t) +R4(t)

∗B1U
−1B∗

1R4(t)
)

dt,

where C is the d× d matrix given by

C :=

∫ 1

0

(

R1(t)
∗W1R2(t) +R3(t)

∗B1U
−1B∗

1R4(t)
)

dt,

and the vectors vx2
, wx2

are given by

vx2
:=

∫ 1

0

(

R1(t)
∗W1 z̄x2

(t) +R3(t)
∗B1U

−1B∗
1 p̄x2

(t) +R1(t)
∗X
(

t;x2
)

)

dt,

wx2
:=

∫ 1

0

(

R2(t)
∗W1 z̄x2

(t) +R4(t)
∗B1U

−1B∗
1 p̄x2

(t) +R2(t)
∗X
(

t;x2
)

)

dt,

and

kx2
:=

∫ 1

0

(

1

2
〈z̄x2

(t),W1 z̄x2
(t)〉+

1

2

〈

p̄x2
(t), B1U

−1B∗
1 p̄x2

(t)
〉

+
〈

z̄x2
(t),X

(

t;x2
)〉

)

dt.

We proceed now as in the proof of Theorem 2.2. Since c̄x2
is smooth, using the linear

maximum principle, taking the derivative in the x1 variable in (5.9) and using that p =
R2(1)

−1
[

z1 −R1(1)x1 − z̄x2
(1)
]

yields

Q1 x1 +C p+ vx2
−R1(1)

∗
(

R2(1)
−1
)∗

(Q2 p+ C∗ x1 + wx2
) = −p

11



and finally Q1−R1(1)
∗(R2(1)

−1)∗C∗ = C−R1(1)
∗(R2(1)

−1)∗Q2+I = vx2
−R1(1)

∗wx2
= 0,

whence (recall that Q2 is symmetric):

vx2
= R1(1)

∗
(

R2(1)
−1
)∗
wx2

,

{

C = −In +R1(1)
∗
(

R2(1)
−1
)∗
Q2

Q1 = R1(1)
∗(R2(1)

−1)∗C∗ = CR2(1)
−1R1(1)

(5.10)

In conclusion, setting D := R2(1)
−1R1(1), E := R2(1)

−1, and F := E∗Q2E yields

c̄x2

(

x1, z1
)

=
1

2
〈x1,D x1〉 −

〈

x1, E
(

z1 − z̄x2
(1)
)〉

+
1

2

〈(

z1 − z̄x2
(1)
)

, F
(

z1 − z̄x2
(1)
)〉

+
〈

E
(

z1 − z̄x2
(1)
)

, wx2

〉

+ kx2
,

which in turn implies (by (5.3))

c
((

x1, x2
)

,
(

y1, e
A2x2

))

=

1

2
〈x1,D x1〉 −

〈

x1, E
(

y1 −G(1)x2 − z̄x2
(1)
)〉

+
1

2

〈(

y1 −G(1)x2 − z̄x2
(1)
)

, F
(

y1 −G(1)x2 − z̄x2
(1)
)〉

+
〈

E
(

y1 −G(1)x2 − z̄x2
(1)
)

, wx2

〉

+ kx2
+

∫ 1

0
l
(

t;x2
)

dt. (5.11)

D and F are symmetric definite positive for the same reason as in the proof of Theorem 2.2.
We are now ready to prove the result. For every x̄2 ∈ IRn−d, set

Mx̄2
:=

{

x = (x1, x2) ∈ IRd × IRn−d |x2 = x̄2

}

,

Nx̄2
:=

{

x = (x1, x2) ∈ IRd × IRn−d |x2 = eA2 x̄2

}

,

and let µ0 = f0L
n, µ1 = f1L

n with densities f0, f1 ∈ L1(IRn) be two compactly supported
probability measures.

Fact: A measurable map S satisfies S♯µ0 = µ1 and costc(S) < +∞ if and only if there
exists, for almost all x2, a measurable Sx2

: IRd → IRd such that

S(x1, x2) =
(

Sx2
(x1), e

A2x2

)

for a.e. x1 (5.12)

and Sx2
pushes forward the measure µx2

0 on Mx2
defined by

µx2

0 := f0
(

·, x2
) ∣

∣det
(

e−A2

)∣

∣ dx1

to the measure µx2

1 on Nx2
defined by

µx2

1 := f1
(

·, eA2x2
)

dx1.

Indeed, by Fubini’s Theorem, the map x1 7→ S(x1, x2) is measurable for almost all x2 and
costc(S) < +∞ implies

∫

IRd
c
(

(x1, x2), S(x1, x2)
)

f0(x1, x2)dx1 < +∞ for a.e. x2
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and in turn, from (5.3), this implies, for almost every x2 ∈ IRn−d, that S(x1, x2) ∈ Nx2

for almost all x1, which means that S(x1, x2) has the form (5.12). Now S♯µ0 = µ1
means

∫

Rn h(x)dµ1(x) =
∫

Rn h
(

S(x)
)

dµ0(x) for any h ∈ L1
(

IRn
)

. From Fubini’s Theorem
together with a change of variable y2 = eA2x2 in the left-hand side, this yields, for any
positive h ∈ L1

(

IRn
)

∫

IRn−d

(
∫

IRd
h(x1, x2)f1(x1, x2)dx1

)

dx2

=

∫

IRn−d

(
∫

IRd
h
((

Se−A2y2
(x1), y2

))

f0
(

x1, e
−A2y2

)
∣

∣det
(

e−A2

)
∣

∣ dx1

)

dy2 .

This is equivalent to (Sx2
)♯µ

x2

0 = µx2

1 and proves the fact.

If S satisfies S♯µ0 = µ1 and costc(S) < +∞, the form (5.12) implies that, for all
measurable h that depends on x2 only, one has

∫

IRd×IRn−d
h(x2)dµ1(x1, x2) =

∫

IRd×IRn−d
h(eA2x2)dµ0(x1, x2),

and this implies (2.6). Conversely, assume now that the measures satisfy (2.6); since

x2 7→

∫

Mx2

dµx2

0 and x2 7→

∫

Nx2

dµx2

1

are the densities of (eA2 ◦ π2)♯µ0 and (π2)♯µ1 respectively, the measures µx2

0 and µx2

1

have, for almost all x2, the same total mass, hence can be considered as probability
measures after normalisation. Then using (5.11) and arguing as in the proof of Theorem
2.2, we deduce that for almost every x2 ∈ IRn−d, there is a unique optimal transport map
Tx2

:Mx2
→ Nx2

together with a convex function ϕx2
: IRd → IR such that

Tx2

(

x1
)

=
(

E−1∇ϕx2
(x1), e

A2x2

)

for a.e. x1 ∈ IRd.

This shows the existence and uniqueness of an optimal transport map T , defined by
T (x1, x2) = (E−1∇ϕx2

(x1), e
A2x2) from µ0 to µ1 (and a fortiori shows (2.5)). Note that

joint measurability of T with respect to the two variables may be seen as a consequence of
the necessity part of [2, Theorem 3.2] which asserts that any optimal plan is concentrated
on a c-monotone Borel subset of IRn × IRn.

If we assume in addition that f0, f1 are both continuous and bounded from below and
above on their support, then each Tx2

is continuous. This is a consequence of Theorem
1 applied for each x2 to the mass transportation problem from µx2

0 to µx2

1 with respect
to the cost given by (5.11). But by [15, Corollary 5.23], there is stability of transport

maps. If {xk2} is a sequence converging to x2, the measures µ
xk
2

0 and µ
xk
2

1 weakly converge
to µx2

0 and µx2

1 respectively, and if in addition the corresponding costs converge uniformly
as well, then the transport {Txk

2

} maps converge to Tx2
in probability. Since all T k

x2
are

indeed uniformly Hölder continuous (see [14, Theorem 50 (i)] or [15, Theorem 12.50]), and
references therein), this concludes the proof of Theorem 2.3.
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6 Examples

6.1 The case W = 0

If W = 0 then the second line in (4.5) is an independent first order differential equation
in the p variable; hence R3(t) = 0 for any t ∈ [0, 1] and the form (4.1) of the cost c. If in
addition, we assume that A = 0 and that the system is controllable, then the matrix B is
necessarily invertible. In that case, we leave the reader to show that the 2n × 2n matrix
R(t) has the form

R(t) =

(

In BU−1B∗

0n In

)

.

Then there holds

c(x, y) =
1

2

〈

(

BU−1B∗
)−1
(

y − x
)

,
(

y − x
)〉

∀x, y ∈ IRn.

And any optimal transport map given by Theorem 2.2 has the form

T =
(

BU−1B∗
)

∇ϕ,

where we used (4.11), with ϕ is a convex function. This can also be viewed as a consequence
of [4] because the above cost is the Euclidean norm corresponding to the positive matrix
(BU−1B∗)−1 and is

(

BU−1B∗
)

∇ϕ is nothing but the gradient of ϕ for this Euclidean
metric.

6.2 The case A = 0, B = U = In

To have a nice form of R(t) let us assume that W is symmetric definite positive. In this
case, we leave the reader to show that the 2n× 2n matrix R(t) has the form :

R(t) =

(

cosh
(

tW
1

2

)

sinh
(

tW
1

2

)

W− 1

2

W
1

2 .sinh
(

tW
1

2

)

cosh
(

tW
1

2

)

)

.

Where

cosh
(

tW
1

2

)

=

∞
∑

n=0

t2n

2n!
W n, sinh

(

tW
1

2

)

=

∞
∑

n=0

t2n+1

2n+ 1 !
W n+ 1

2

And any optimal transport map, given by Theorem 2.2, has the form

T =
(

sinh W
1

2 .W
−1

2

)

∇ϕ,

where we used (4.11) and that ϕ is a convex function.

7 Final comments

It is worth noticing that the existence and uniqueness part in Theorem 2.2 is not new.
It is a consequence of [1, Theorem 4.1] together with the Lipschitz regularity of the cost.
The formula (2.3) implies that the Ma-Trudinger-Wang tensor associated with the cost is
identically zero. Such a result has been obtained previously by McCann and Lee without
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computing explicitly the cost (see [10, Theorem 1.1]). We finally observe that (2.4) means
that the optimal transport map T is convex up to a linear change of coordinates. Such a
property is related to the vanishing of the Ma-Trudinger-Wang tensor that we mentioned
above and [5, Theorem 4.3]. We refer the interested reader to [7, 15] for a more details
about the Ma-Trudinger-Wang tensor and its link with regularity of optimal transport
maps.
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