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Mass transportation with LQ cost functions

We study the optimal transport problem in the Euclidean space where the cost function is given by the value function associated with a Linear Quadratic minimization problem. Under appropriate assumptions, we generalize Brenier's Theorem proving existence and uniqueness of an optimal transport map. In the controllable case, we show that the optimal transport map has to be the gradient of a convex function up to a linear change of coordinates. We give regularity results and also investigate the non-controllable case.

Introduction

The optimal transport problem can be stated as follows: given two probability measures µ 0 and µ 1 , defined on measurable spaces X and Y respectively and a cost function c : X × Y -→ IR ∪ {+∞} find a measurable map T : X -→ Y which pushes forward µ 0 to µ 1 , that is When the transport condition T ♯ µ 0 = µ 1 is satisfied, we say that T is a transport map, and if T minimizes also the cost, that is if cost c (T ) = min

T ♯ µ 0 = µ 1 (i.
S ♯ µ 0 =µ 1 cost c (S)
then we call it an optimal transport map. Since the seminal famous paper by Gaspard Monge in 1781 [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF], there was a revival of interest in mass transportation in the nineties.

In 1987 [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF][START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF], Brenier proved an existence and uniqueness result of optimal transport maps for the cost c(x, y) = |x -y| 2 in IR n and showed that any such optimal transport map is indeed the gradient of a convex function. Since then, people extended the theory to other costs functions in IR n or to other types of spaces (see [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]). The aim of this paper is to study existence, uniqueness, and regularity of optimal transport maps for costs functions coming for LQ minimization problems in IR n . Let us consider a linear control system of the form ẋ = Ax + Bu (1.1) where the state x belongs to IR n , the control u belongs to IR m and A, B are n×n and n×m matrices respectively. For every initial state x ∈ IR n and every control u ∈ L 2 [0, 1]; IR m , we denote by x(•; x, u) : [0, 1] → IR n the unique solution to the Cauchy problem ẋ(t) = Ax(t) + Bu(t) for a.e. t ∈ [0, 1],

x(0) = x.

(1.2)

Let us in addition consider a quadratic Lagrangian of the form

L(x, u) = 1 2 x, W x + 1 2 u, U u , (1.3) 
where W is a n × n symmetric non-negative matrix and U is a m × m symmetric positive definite matrix. The cost c : IR n × IR n → [0, +∞] associated with (1.1) and (1.3) is given by c(x, y) := inf

1 0 L(x(t; x, u), u(t))dt | u ∈ L 2 [0, 1]; IR m s.t. x(1; x, u) = y , (1.4) 
where we set c(x, y) = +∞ if there is no u ∈ L 2 [0, 1]; IR m such that x(1; x, u) = y.

We notice that LQ costs as above include as a particular case the Euclidean cost 1/2|x -y| 2 by taking B = I n , U = I n , A = 0, W = 0 . Costs coming from optimal control have already been studied in [START_REF] Agrachev | Optimal transportation under nonholonomic constraints[END_REF] (see also [START_REF] Figalli | Mass Transportation on sub-Riemannian Manifolds[END_REF]). However, this reference does not give regularity results or properties relating the transport map with the gradient of a convex function. Furthermore, the study of a cost that is finite only for points lying in the same leaf of a foliation, like in the non-controllable case is also original.

The structure of the paper is the following. Our results are stated in Section 2. In Section 3, we introduce some preliminaries in optimal transport theory concerned with Kantorovitch duality. In Sections 4 and 5, we provide the proofs of our results. Then, we present some examples in Section 6. Finally in Section 7, we conclude with several remarks about our results.

Main results

Preliminaries on linear systems

Consider system (1.1) and let V be the smallest linear subspace of IR n that contains the image of the operator B : IR m → IR n and is invariant by A, or, more explicitly,

V = Span IR B, AB, A 2 B, . . . , A n-1 B ⊂ IR n , d = dim V.
(2.1)

The well-known Kalman criterion states that system (1.1) is controllable if and only if d; this is stated below with a description of the situation where d < n. This decomposition can be found for instance in [START_REF] Sontag | Mathematical control theory. Deterministic finite-dimensional systems[END_REF]Lemma 3.3.3].

Proposition 2.1. Let x, y be in IR n . There exists a control u ∈ L 2 [0, 1]; IR m such that x(t; x, u) = y if and only if e A x -y ∈ V (i.e. y lies in the affine subspace e A x + V ).

In particular it exists for all x, y if d; the system -or the pair (A, B)-is then called controllable.

If d < n, after a linear change of coordinates in IR n , the control system (1.1) has the following form:

ẋ = ẋ1 ẋ2 = A 1 A 3 0 A 2 x 1 x 2 + B 1 u 0 , (2.2) 
where the state x is partitioned into two blocks x 1 and x 2 of dimension d and n -d respectively and

A 1 , A 2 , A 3 , B 1 are d × d, d × n -d, n -d × n -d and d × m matrices respectively, such that the pair (A 1 , B 1 ) is controllable.

The controllable case

The following result of existence, uniqueness and regularity follows easily from the classical theory of optimal mass transportation. Let µ 0 , µ 1 be two compactly supported probability measures on IR n . Assume that µ 0 is absolutely continuous with respect to the Lebesgue measure L n . Then, there is existence and uniqueness of an optimal transport map T : IR n → IR n . Such a map is characterized by the existence of a convex function ϕ : IR n → IR such that

T (x) = E -1 ∇ϕ(x) for a.e. x ∈ IR n . (2.4)
If in addition, µ 0 , µ 1 are associated with probability densities f 0 , f 1 on supp(µ 0 ) and supp(µ 1 ) respectively, with f 0 and f 1 bounded from below and above, and if supp(µ 0 ) is connected and supp(µ 1 ) convex, then T is continuous.

We postpone several remarks concerning Theorem 2.2 to Section 7.

The non-controllable case

Here d < n in (2.1), hence the evolution of the (n -d)-dimensional x 2 is totally fixed by (2.2) and c(x, y) will obviously be infinite for almost all pairs x, y: these such that y 2 = e A 2 x 2 . A result similar to the above theorem requires first there exists at least one transport map with finite cost, i.e.

inf

S ♯ µ 0 =µ 1 cost c (S) := IR n c(x, S(x)) dµ 0 (x), < +∞. (2.5)
Let π 2 : IR n → IR n-d be the projection on the second block in the coordinates of (2.2): π 2 (x) = x 2 (it is also the projection on the quotient IR n /V ).

Theorem 2.3. Let µ 0 and µ 1 be compactly supported probability measures with continuous

densities f 0 , f 1 (µ 0 = f 0 L n , µ 1 = f 1 L n ).
There exists a transport map with finite cost (2.5) if and only if

(π 2 ) ♯ µ 1 = e A 2 • π 2 ♯ µ 0 . (2.6)
If this is satisfied, then there exists a unique optimal transport map T : IR n → IR n . Moreover, if both densities f 0 , f 1 are bounded from below and above on supp(µ 0 ) and supp(µ 1 ) respectively, and if supp(µ 0 ) and supp(µ 1 ) are both convex, then T is continuous.

Again, remarks concerning Theorem 2.3 are postponed to Section 7.

Preliminaries in optimal transport theory

Given two probability measures µ 0 , µ 1 on IR n and a cost function c :

IR n × IR n → [0, +∞],
we are looking for a transport map T : IR n → IR n which minimizes the transportation cost IR n c(x, T (x)) dµ 0 . The constraint T # µ 0 = µ 1 being highly non-linear, the optimal transport problem is quite difficult from the viewpoint of calculus of variation. The major advance on this problem was due to Kantorovich, who proposed in [START_REF] Kantorovich | On the transfer of masses[END_REF][START_REF] Kantorovich | On a problem of Monge[END_REF] a notion of weak solution of the optimal transport problem. He suggested to look for plans instead of transport maps, that is probability measures γ in IR n × IR n whose marginals are µ 0 and

µ 1 , that is (π 1 ) ♯ γ = µ 0 and (π 2 ) ♯ γ = µ 1 ,
where π 1 : IR n × IR n → IR n are the canonical projections on the first and second variable respectively. Denoting by Π(µ 0 , µ 1 ) the set of plans, the new minimization problem becomes the following:

C µ 0 , µ 1 = min γ∈Π(µ 0 ,µ 1 ) IR n ×IR n c(x, y) dγ(x, y) . (3.1)
If γ is a minimizer for the Kantorovich formulation, we say that it is an optimal plan. Due to the linearity of the constraint γ ∈ Π(µ 0 , µ 1 ), it is simple, using weak topologies, to prove existence of solutions to (3.1) as soon as c is lower semi-continuous (see for instance [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]). The connection between the formulation of Kantorovich and that of Monge can be seen by noticing that any transport map T induces the plan defined by (Id × T ) ♯ µ 0 which is concentrated on the graph of T . Thus, the problem of showing existence of optimal transport maps can be reduced to prove that an optimal transport plan is concentrated on a graph. Moreover, if one can show that any optimal plan is concentrated on a graph, since γ 1 +γ 2 2 is optimal if so are γ 1 and γ 2 , uniqueness of the transport map easily follows. The following definition is exactly [15, Definition 5.2]:

Definition 3.1. Let c : IR n × IR n → [0, ∞]. A function ψ : IR n → IR ∪ {+∞} is said to be c-convex if it is not identically +∞ and there exists a function ζ : IR n → IR ∪ {-∞, +∞} such that ψ(x) = sup y∈IR n ζ(y) -c(x, y) ∀x ∈ IR n .
Then its c-transform is the function ψ c defined by

ψ c (y) = inf x∈IR n ψ(x) + c(x, y) ∀y ∈ IR n ,
and its c-subdifferential is the set defined by

∂ c ψ := (x, y) ∈ IR n × IR n | ψ c (y) -ψ(x) = c(x, y) .
Moreover, the c-subdifferential of ψ at x ∈ IR n is

∂ c ψ(x) := y ∈ IR n | (x, y) ∈ ∂ c ψ , or equivalently ψ(x) + c(x, y) ≤ ψ(z) + c(z, y) ∀z ∈ IR n .
The functions ψ and ψ c are said to be c-conjugate.

Let us denote by P c (IR n ) the set of compactly supported probability measures. From now on, supp(µ 0 ) and supp(µ 1 ) will denote the supports of µ 0 and µ 1 respectively, i.e. the smallest closed sets on which µ 0 and µ 1 are respectively concentrated. Kantorovitch duality can be stated as follows (see [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Theorem 5.10]): Theorem 3.2. Let µ 0 , µ 1 ∈ P c (IR n ) and c : IR n × IR n → [0, ∞) be a lower continuous function. Then there exists a c-convex function ψ : IR n → IR such that the following holds: a transport plan γ ∈ Π(µ 0 , µ 1 ) is optimal if and only if γ(∂ c ψ) = 1 (that is, γ is concentrated on the c-subdifferential of ψ). Moreover ψ can be chosen such that

ψ(x) = sup y∈supp(µ 1 ) {ψ c (y) -c(x, y)} ∀x ∈ IR n , (3.2) 
ψ c (y) = inf x∈supp(µ 0 ) {ψ(x) + c(x, y)} ∀y ∈ IR n . (3.3)
By the above theorem we see that, in order to prove existence and uniqueness of optimal transport maps, it suffices to prove that there exist two Borel sets

Z 0 , Z 1 ⊂ IR n , with µ 0 (Z 0 ) = µ 1 (Z 1 ) = 1, such that and ∂ c ψ is a graph inside Z 0 × Z 1 (or equivalently that ∂ c ψ(x) ∩ Z 1 is a singleton for all x ∈ Z 0 ).

Proof of Theorem 2.2

First, we prove that (2.3) holds. This is not new, but the formulas are not given in textbooks in extenso. The case W = 0 is more classical and one may find, for instance in [START_REF] Lee | Foundations of optimal control theory[END_REF] the expression of c in that case:

c(x, y) = x -e -A y , G -1 (x -e -A y) with G = 1 0 e τ A * BU -1 B * e τ A dτ (4.1)
where the controllability Grammian G is positive definite because the system is controllable. This is indeed of the form (2.3). Let us derive the general form from the classical linear Pontryagin Maximum principle (see for instance the same reference).

The pseudo Hamiltonian H 0 : IR n × IR n × IR m → IR associated with the optimization problem under study is given by

H 0 (x, p, u) := p, Ax + Bu - 1 2 x, W x - 1 2 u, U u , (4.2) 
the control u that maximizes this expression for each (p, x) is given by

u = U -1 B * p (4.3)
and the Hamiltonian H :

IR n × IR n → IR, defined as H(x, p) = max {H 0 (x, p, u) | u ∈ IR m } is given by H(x, p) = p, Ax - 1 2 x, W x + 1 2 p, BU -1 B * p . (4.4)
Therefore the Hamiltonian differential equation ẋ = ∂H/∂p, ṗ = -∂H/∂x associated to our minimization problem is given by

ẋ ṗ = A BU -1 B * W -A * x p (4.5) 
Denote by R(•) : [0, 1] → M 2n (IR) the fundamental solution to the Cauchy problem

Ṙ(t) = A BU -1 B * W -A * R(t) ∀t ∈ [0, 1], R(0) = I 2n , (4.6) 
and write it as

R(t) = R 1 (t) R 2 (t) R 3 (t) R 4 (t) ∀t ∈ [0, 1],
where R i (•) is a n × n matrix for i = 1, • • • 4. For every x ∈ IR n fixed, denote by exp x the mapping from IR n to IR n which sends via the Hamiltonian vector field the initial adjoint vector p ∈ IR n to the final state x(1), that is

exp x (p) := R 1 (1)x + R 2 (1)p ∀p ∈ IR n . (4.7)
Controllability of the system (1.1) implies that the affine mapping exp x is onto, and hence a bijection. Indeed, there is, for any x, y ∈ IR n , (at least) one control u ∈ L 2 [0, 1]; IR m which minimizes the cost

1 0 L(x(t; x, u), u(t))dt
among all controls steering x to y in time 1; thanks to the linear maximum principle, there corresponds to each minimizing control a p ∈ IR n such that exp x (p) = y. Hence the matrix R 2 (t) is invertible for all t. Given x and y in IR n , the cost between x and y is given by

c(x, y) = 1 0 1 2 x(t), W x(t) + 1 2 p(t), BU -1 B * p(t) dt,
where x(•), p(•) : [0, 1] → IR n × IR n is the solution to the Hamiltonian system (4.5) satisfying x(0) = x and exp x p(0) = y.

Set p := p(0), that is p = R 2 (1) -1 y -R 1 (1)x . (4.8) 
We deduce easily that c is a smooth function of the form

c(x, y) = 1 2 x, Q 1 x + x, Cp + 1 2 p, Q 2 p ∀x, y ∈ IR n , (4.9) 
where both Q 1 , Q 2 are non-negative symmetric n × n matrices given by

Q 1 := 1 0 R 1 (t) * W R 1 (t) + R 3 (t) * BU -1 B * R 3 (t) dt, Q 2 := 1 0 R 2 (t) * W R 2 (t) + R 4 (t) * BU -1 B * R 4 (t) dt,
and where C is the n × n matrix given by By definition of the cost c, there holds

C := 1 0 R 1 (t) * W R 2 (t) + R 3 (t) * BU -1 B * R 4 (t) dt.
1 0 L(y(t; y, v), v(t))dt -c y(0; y, v), y ≥ 0 ∀v ∈ L 2 [0, 1], IR m .
Moreover, there is equality in the above inequality whenever v = u. Thanks to the linear maximum principle, since the cost c is smooth, this means that y = exp x (p) with p = -∇ x c(x, y).

Computing ∇ x c(x, y) by differentiating (4.9)-(4.8) with respect to the variable x yields

Q 1 x + Cp -R 1 (1) * R 2 (1) -1 * C * x + Q 2 p = -p,
and finally (recall that Q 1 is symmetric) :

C = -I n + R 1 (1) * R 2 (1) -1 * Q 2 , Q 1 = R 1 (1) * R 2 (1) -1 * C * = CR 2 (1) -1 R 1 (1). (4.10)
Plugging this and (4.8) into (4.9) yields the expression (2.3) for c(x, y) with

D = R 2 (1) -1 R 1 (1) , E = R 2 (1) -1 , F = (R 2 (1) -1 ) * Q 2 R 2 (1) -1 , (4.11) 
where D is symmetric because (4.10) implies

Q 1 = -E+E * Q 2 E and Q 1 , Q 2 are symmetric;
Positive definiteness of D and F may be deduced from the fact that there is no solution of (1.1) driving 0 to a nonzero y or a nonzero x to 0 in finite time with a zero cost.

Let us now show the existence and uniqueness of an optimal transport map. Let µ 0 , µ 1 be two compactly supported probability measures in IR n and assume that µ 0 is absolutely continuous with respect to the Lebesgue measure. Let ψ, φ := ψ c : IR n → IR be the Kantorovitch potentials given by Theorem 3.2 (note that c is non-negative valued). First, since c is smooth and both sets supp(µ 0 ), supp(µ 1 ) are assumed to be compact, (3.2)-(3.3) imply that both potentials ψ, φ are locally Lipschitz. Therefore, thanks to Rademacher's Theorem and the fact that µ 0 is absolutely continuous with respect to the Lebesgue measure, ψ is differentiable µ 0 -almost everywhere. Let x ∈ supp(µ 0 ) be a differentiability point of ψ. Let y ∈ supp(µ 1 ) be such that φ(y) -ψ(x) = c(x, y),

and u ∈ L 2 [0, 1], IR m be a control minimizing c(x, y) = inf 1 0 L(x(t; x, v), v(t))dt | v ∈ L 2 [0, 1]; IR m s.t. x(1; x, v) = y .
Then we have

1 0 L(y(t; y, v), v(t))dt ≥ c y(0; y, v), y ≥ φ(y) -ψ y(0; y, v) ∀v ∈ L 2 [0, 1]; IR m , with equality if v = u.
As above, this implies that

y = exp x (p) with p = ∇ψ(x).
This shows that y is uniquely determined for every differentiability point of φ and in turn proves existence and uniqueness of an optimal measurable transport map x → y. Note that the potential ψ can be written as follows:

ψ(x) = sup y∈supp(µ 1 ) {φ(y) -c(x, y)} = - 1 2 x, D x + sup y∈supp(µ 1 )
x, E y -1 2 y, F y + φ(y) .

This shows that the function ϕ : IR n → IR defined by

ϕ(x) := ψ(x) + 1 2 x, D x ∀x ∈ IR n ,
is convex (as the sup of a family of convex functions) while, for almost every x ∈ supp(µ 0 ), deriving the expression of exp x (p) from (4.7) and (4.11),

T (x) = exp x ∇ψ(x) = E -1 Dx + ∇ψ(x) = E -1 ∇ϕ(x) .
It remains to show that under additional assumptions, T is continuous. One obviously has ∇ϕ(x) = E T (x) for all x; it is clear that this and T ♯ µ 0 = µ 1 imply (∇ϕ) ♯ µ 0 = μ1 for the measure μ1 defined by

μ1 (A) = µ 1 E -1 x | x ∈ A
for every Borel set A ⊂ IR n (μ 1 is the pushforward of µ 1 by the map x → Ex). Since ϕ is convex, ∇ϕ is then the optimal transport map from µ 0 to μ1 for the cost ĉ(x, y) = 1 2 |x-y| 2 . This implies the continuity of ∇ϕ -hence of T -according to [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Theorem 12.50 (i)] which asserts the following: if μ0 , μ1 are two compactly supported probability measures in IR n associated with densities f0 , f1 which are bounded from below and above on supp( f0 ) and supp( f1 ) respectively, and if supp( f0 ) is connected and supp( f1 ) is convex, then the optimal transport map T : IR n → IR n from μ0 to with respect to the Euclidean quadratic cost ĉ(x, y) = 1 2 |x -y| 2 is continuous. Take μ1 defined above and set μ0 = µ 0 ; they do satisfy these assumptions for µ 0 and µ 1 and applying an invertible linear map does not change convexity of the support of a density, and we just proved that T is ∇ϕ with the same ϕ as above.

Proof of Theorem 2.3

Let us first treat the case d = 0 separately. According to (2.1), either there is no control (m = 0) or the matrix B is zero; in both cases the system reads ẋ = Ax and c(x, y) = Then there is only one map S such that cost c (S) < ∞, given by S(x) = e A x for all x, the compatibility on measures is µ 1 = S ♯ µ 0 with this precise S, and the result is proved in the case d = 0. From now on, we assume that

d ∈ {1, • • • , n -1}, i.e. none of the two blocks in (2.2) is void (d ≥ 1, n-d ≥ 1). For every x = x 1 , x 2 ∈ IR d ×IR n-d = IR n and u ∈ L 2 [0, 1]; IR m , the solution x(•; x, u) : [0, 1] → IR n to the Cauchy problem (1.
2) with the decomposition given by (2.2) satisfies x(t; x, u) = x 1 (t; x, u) x 2 t; x 2 = e tA 1 x 1 + e tA 1 t 0 e -sA 1 A 3 e sA 2 x 2 + B 1 u(s) ds e tA 2 x 2 , (5.1)

for every t ∈ [0, 1]. Denote by x1 (•) = x1 •; x 1 , u : [0, 1] → IR d the solution to the Cauchy problem ẋ1 (t) = A 1 x1 (t) + B 1 u(t) for a.e. t ∈ [0, 1], x1 (0) = x 1 . (5.2) 
Then we have

x 1 t; x, u = x1 t; x 1 , u + G(t)x 2 ∀t ∈ [0, 1],
where

G : [0, 1] → M d,n-d (IR) is defined by G(t) := e tA 1 t 0 e -sA 1 A 3 e sA 2 ds ∀t ∈ [0, 1].
Therefore we have for almost every t ∈ [0, 1],

L x(t; x, u), u(t) = 1 2 x(t; x, u), W x(t; x, u) + 1 2 u(t), U u(t) = 1 2 x1 t; x 1 , u , W 1 x1 t; x 1 , u + 1 2 u(t), U u(t) + x1 t; x 1 , u , X t; x 2 + l t; x 2 ,
where the symmetric matrix W is decomposed, in the coordinates of (2.2) as

W = W 1 W 3 W 3 * W 2
with W 1 and W 2 positive definite d × d and n -d × n -d matrices respectively, W 3 a d × n -d matrix, and

X t; x 2 = W 1 G(t)x 2 + W 3 x 2 t; x 2 , l t; x 2 = 1 2 
G(t)x 2 x 2 t; x 2 , W 1 W 3 W 3 * W 2 G(t)x 2 x 2 t; x 2 .
In conclusion, we have for every

x = x 1 , x 2 , y = y 1 , y 2 ∈ IR n , c(x, y) = cx 2 x 1 , y 1 -G(1)x 2 + 1 0 l t; x 2 dt if y 2 = e A 2 x 2 +∞ otherwise, (5.3) 
where the cost cx 2 :

IR d × IR d → [0, +∞) is defined by cx 2 x 1 , z 1 := inf 1 0 Lx 2 t, x1 (t; x 1 , u), u(t) dt | u ∈ L 2 [0, 1]; IR m s.t. x1 1; x 1 , u = z 1 , (5.4) 
for any x 1 , z 1 ∈ IR d , and where the Lagrangian Lx

2 : IR × IR d × IR m → [0, +∞) is defined by Lx 2 t, z, u := 1 2 z, W 1 z + 1 2 u(t), U u(t) + z, X t; x 2 . (5.5) 
We proceed now as in the proof of Theorem 2.2. Let x 2 ∈ IR n-d be fixed, the pseudo Hamiltonian H 0 : IR × IR d × IR d × IR m → IR associated with the cost cx 2 is given by

H 0 (t, z, p, u) := p, A 1 z + B 1 u - 1 2 z, W 1 z - 1 2 u, U u -z, X t; x 2 . (5.6) 
Then ∂H 0 ∂u = 0 yields u = U -1 B * 1 p and the Hamiltonian H : IR × IR d × IR d → IR is given by

H(t, z, p) = max {H 0 (t, z, p, u) | u ∈ IR m } = p, A 1 z - 1 2 z, W 1 z + 1 2 p, B 1 U -1 B * 1 p -z, X t; x 2 .
Therefore the Hamiltonian system associated to our minimization problem is given by

ż = A 1 z + B 1 U -1 B * 1 p ṗ = -A * 1 p + W 1 z + X t; x 2 .
(5.7)

Denote by R(•) : [0, 1] → M 2d (IR) the fundamental solution to the Cauchy problem

Ṙ(t) = A 1 B 1 U -1 B * 1 W 1 -A * 1 R(t) ∀t ∈ [0, 1], R(0) = I 2d , (5.8) 
and write it as

R(t) = R 1 (t) R 2 (t) R 3 (t) R 4 (t) ∀t ∈ [0, 1],
where

R i (•) is a d × d matrix for i = 1, • • • 4. Any solution z(•), p(•) : [0, 1] → IR d × IR d of (5.7
) with z(0) = z, p(0) = p can be written as

z(t) = R 1 (t)z + R 2 (t)p + zx 2 (t) p(t) = R 3 (t)z + R 4 (t)p + px 2 (t) ∀t ∈ [0, 1],
where zx 2 (•), px 2 (•) : [0, 1] → IR d × IR d of (5.7) satisfying zx 2 (0) = 0, px 2 (0) = 0. For every x 1 ∈ IR d , the mapping exp x 1 : IR d → IR d defined by

exp x 1 (p) := R 1 (1)x 1 + R 2 (1)p + zx 2 (1) ∀p ∈ IR d ,
is an affine bijection. For every x 1 , z 1 , p ∈ IR d with z 1 = exp x 1 (p), there holds

cx 2 x 1 , z 1 = 1 2 x 1 , Q 1 x 1 + 1 2 p, Q 2 p + x 1 , C p + x 1 , v x 2 + p, w x 2 + k x 2 , (5.9) 
where both Q 1 , Q 2 are non-negative symmetric d × d matrices given by

Q 1 := 1 0 R 1 (t) * W 1 R 1 (t) + R 3 (t) * B 1 U -1 B * 1 R 3 (t) dt, Q 2 := 1 0 R 2 (t) * W 1 R 2 (t) + R 4 (t) * B 1 U -1 B * 1 R 4 (t) dt,
where C is the d × d matrix given by

C := 1 0 R 1 (t) * W 1 R 2 (t) + R 3 (t) * B 1 U -1 B * 1 R 4 (t) dt,
and the vectors v x 2 , w x 2 are given by

v x 2 := 1 0 R 1 (t) * W 1 zx 2 (t) + R 3 (t) * B 1 U -1 B * 1 px 2 (t) + R 1 (t) * X t; x 2 dt, w x 2 := 1 0 R 2 (t) * W 1 zx 2 (t) + R 4 (t) * B 1 U -1 B * 1 px 2 (t) + R 2 (t) * X t; x 2 dt, and 
k x 2 := 1 0 1 2 zx 2 (t), W 1 zx 2 (t) + 1 2 px 2 (t), B 1 U -1 B * 1 px 2 (t) + zx 2 (t), X t; x 2 dt.
We proceed now as in the proof of Theorem 2.2. Since cx 2 is smooth, using the linear maximum principle, taking the derivative in the x 1 variable in (5.9) and using that p = R 2 (1) -1 z 1 -R 1 (1)x 1 -zx 2 (1) yields

Q 1 x 1 + C p + v x 2 -R 1 (1) * R 2 (1) -1 * (Q 2 p + C * x 1 + w x 2 ) = -p
and in turn, from (5.3), this implies, for almost every x 2 ∈ IR n-d , that S(x 1 , x 2 ) ∈ N x 2 for almost all x 1 , which means that S(x 1 , x 2 ) has the form (5.12). Now S ♯ µ 0 = µ 1 means R n h(x)dµ 1 (x) = R n h S(x) dµ 0 (x) for any h ∈ L 1 IR n . From Fubini's Theorem together with a change of variable y 2 = e A 2 x 2 in the left-hand side, this yields, for any positive h ∈ L 1 IR n

IR n-d IR d h(x 1 , x 2 )f 1 (x 1 , x 2 )dx 1 dx 2 = IR n-d IR d h S e -A 2 y 2 (x 1 ), y 2 f 0 x 1 , e -A 2 y 2 det e -A 2 dx 1 dy 2 .
This is equivalent to (S x 2 ) ♯ µ x 2 0 = µ x 2 1 and proves the fact. If S satisfies S ♯ µ 0 = µ 1 and cost c (S) < +∞, the form (5.12) implies that, for all measurable h that depends on x 2 only, one has

IR d ×IR n-d h(x 2 )dµ 1 (x 1 , x 2 ) = IR d ×IR n-d h(e A 2 x 2 )dµ 0 (x 1 , x 2 ),
and this implies (2.6). Conversely, assume now that the measures satisfy (2.6); since

x 2 → Mx 2 dµ x 2 0 and x 2 → Nx 2 dµ x 2 1
are the densities of (e A 2 • π 2 ) ♯ µ 0 and (π 2 ) ♯ µ 1 respectively, the measures µ x 2 0 and µ x 2 1 have, for almost all x 2 , the same total mass, hence can be considered as probability measures after normalisation. Then using (5.11) and arguing as in the proof of Theorem 2.2, we deduce that for almost every x 2 ∈ IR n-d , there is a unique optimal transport map T x 2 : M x 2 → N x 2 together with a convex function ϕ x 2 : IR d → IR such that

T x 2 x 1 = E -1 ∇ϕ x 2 (x 1 ), e A 2 x 2 for a.e. x 1 ∈ IR d .
This shows the existence and uniqueness of an optimal transport map T , defined by T (x 1 , x 2 ) = (E -1 ∇ϕ x 2 (x 1 ), e A 2 x 2 ) from µ 0 to µ 1 (and a fortiori shows (2.5)). Note that joint measurability of T with respect to the two variables may be seen as a consequence of the necessity part of [2, Theorem 3.2] which asserts that any optimal plan is concentrated on a c-monotone Borel subset of IR n × IR n . If we assume in addition that f 0 , f 1 are both continuous and bounded from below and above on their support, then each T x 2 is continuous. This is a consequence of Theorem 1 applied for each x 2 to the mass transportation problem from µ x 2 0 to µ x 2 1 with respect to the cost given by (5.11). But by [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Corollary 5.23], there is stability of transport maps. If {x k 2 } is a sequence converging to x 2 , the measures µ

x k 2 0 and µ x k 2 
1 weakly converge to µ x 2 0 and µ x 2 1 respectively, and if in addition the corresponding costs converge uniformly as well, then the transport {T x k 2 } maps converge to T x 2 in probability. Since all T k x 2 are indeed uniformly Hölder continuous (see [START_REF] Villani | Topics in Mass Transportation[END_REF]Theorem 50 (i)] or [START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF]Theorem 12.50]), and references therein), this concludes the proof of Theorem 2.3.

Examples

The case W = 0

If W = 0 then the second line in (4.5) is an independent first order differential equation in the p variable; hence R 3 (t) = 0 for any t ∈ [0, 1] and the form (4.1) of the cost c. If in addition, we assume that A = 0 and that the system is controllable, then the matrix B is necessarily invertible. In that case, we leave the reader to show that the 2n × 2n matrix R(t) has the form

R(t) = I n BU -1 B * 0 n I n .
Then there holds c(x, y) = 1 2 BU -1 B * -1 y -x , y -x ∀x, y ∈ IR n .

And any optimal transport map given by Theorem 2.2 has the form

T = BU -1 B * ∇ϕ,
where we used (4.11), with ϕ is a convex function. This can also be viewed as a consequence of [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF] because the above cost is the Euclidean norm corresponding to the positive matrix (BU -1 B * ) -1 and is BU -1 B * ∇ϕ is nothing but the gradient of ϕ for this Euclidean metric.

6.2

The case A = 0, B = U = I n

To have a nice form of R(t) let us assume that W is symmetric definite positive. In this case, we leave the reader to show that the 2n × 2n matrix R(t) has the form : R(t) = cosh tW

1 2
sinh tW And any optimal transport map, given by Theorem 2.2, has the form

T = sinh W 1 2 .W -1 2 
∇ϕ,

where we used (4.11) and that ϕ is a convex function.

Final comments

It is worth noticing that the existence and uniqueness part in Theorem 2.2 is not new. It is a consequence of [1, Theorem 4.1] together with the Lipschitz regularity of the cost. The formula (2.3) implies that the Ma-Trudinger-Wang tensor associated with the cost is identically zero. Such a result has been obtained previously by McCann and Lee without computing explicitly the cost (see [START_REF] Lee | The Ma-Trudinger-Wang curvature for natural mechanical actions[END_REF]Theorem 1.1]). We finally observe that (2.4) means that the optimal transport map T is convex up to a linear change of coordinates. Such a property is related to the vanishing of the Ma-Trudinger-Wang tensor that we mentioned above and [START_REF] Figalli | Continuity and injectivity of optimal maps for non-negatively cross-curved costs[END_REF]Theorem 4.3]. We refer the interested reader to [START_REF] Figalli | Necessary and sufficient conditions for continuity of optimal transport maps on Riemannian manifolds[END_REF][START_REF] Villani | Optimal transport, old and new. Grundlehren des mathematischen Wissenschaften[END_REF] for a more details about the Ma-Trudinger-Wang tensor and its link with regularity of optimal transport maps.

  e. µ 1 (B) = µ 0 T -1 (B) for all B ⊂ Y measurable), and which minimizes the transportation cost cost c (T ) := X c(x, T (x)) dµ 0 (x).

  Let x, y ∈ IR n and u ∈ L 2 [0, 1]; IR m a control minimizing c(x, y) be fixed. For every control v ∈ L 2 [0, 1], IR m , denote by y(•; y, v) : [0, 1] → IR n the unique solution to the Cauchy problem ẏ(t) = Ay(t) + Bv(t) for a.e. t ∈ [0, 1], y(1) = y.

1 2 1 0

 1 e tA x, W e tA x dt if y = e A x , +∞ otherwise.

and finally Q 1 -R 1 (1) * (R 2 (1) -1 ) * C * = C -R 1 (1) * (R 2 (1) -1 ) * Q 2 +I = v x 2 -R 1 (1) * w x 2 = 0, whence (recall that Q 2 is symmetric):

In conclusion, setting

, and

which in turn implies (by (5.3))

D and F are symmetric definite positive for the same reason as in the proof of Theorem 2.2.

We are now ready to prove the result. For every x2 ∈ IR n-d , set

, and let µ 0 = f 0 L n , µ 1 = f 1 L n with densities f 0 , f 1 ∈ L 1 (IR n ) be two compactly supported probability measures.

Fact: A measurable map S satisfies S ♯ µ 0 = µ 1 and cost c (S) < +∞ if and only if there exists, for almost all x 2 , a measurable S x 2 :

), e A 2 x 2 for a.e. x 1 (5.12)

and S x 2 pushes forward the measure µ x 2 0 on M x 2 defined by

Indeed, by Fubini's Theorem, the map x 1 → S(x 1 , x 2 ) is measurable for almost all x 2 and cost c (S) < +∞ implies IR d c (x 1 , x 2 ), S(x 1 , x 2 ) f 0 (x 1 , x 2 )dx 1 < +∞ for a.e. x 2