High-Order Sliding Mode Control of DFIG-Based Marine Current Turbine
Résumé
This paper deals with the speed control of a variable speed DFIG-based marine current turbine. Indeed, to increase the generated power and therefore the efficiency of a marine current turbine, a nonlinear controller has been proposed. DFIG has been already considered for similar applications particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Indeed, these may decrease marine current turbine performances. Moreover, DFIG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely high-order sliding mode control, is proposed. This control strategy relies on the resource and the marine turbine models that were validated by experimental data. The sensitivity of the proposed control strategy is analyzed regarding the swell effect as it is considered as the most disturbing one for the resource model. Tidal current data from the Raz de Sein (Brittany, France) are used to run simulations of a 7.5-kW prototype over various flow regimes. Simulation results are presented and fully analyzed.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...