Efficient pairing computation with theta functions - Archive ouverte HAL
Processing math: 100%
Communication Dans Un Congrès Année : 2010

Efficient pairing computation with theta functions

Résumé

In this paper, we present a new approach based on theta functions to compute Weil and Tate pairings. A benefit of our method, which does not rely on the classical Miller's algorithm, is its generality since it extends to all abelian varieties the classical Weil and Tate pairing formulas. In the case of dimension 1 and 2 abelian varieties our algorithms lead to implementations which are efficient and naturally deterministic. We also introduce symmetric Weil and Tate pairings on Kummer varieties and explain how to compute them efficiently. We exhibit a nice algorithmic compatibility between some algebraic groups quotiented by the action of the automorphism 1, where the \Z-action can be computed efficiently with a Montgomery ladder type algorithm.
Fichier principal
Vignette du fichier
pairing_short.pdf (255.48 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00528944 , version 1 (23-10-2010)

Identifiants

Citer

David Lubicz, Damien Robert. Efficient pairing computation with theta functions. ANTS IX - Algorithmic Number Theory 2010, Jul 2010, Nancy, France. pp.251-269, ⟨10.1007/978-3-642-14518-6_21⟩. ⟨hal-00528944⟩
506 Consultations
266 Téléchargements

Altmetric

Partager

More