Adaptive Semi-Regular Remeshing: A Voronoi-Based Approach
Résumé
We propose an adaptive semi-regular remeshing algorithm for surface meshes. Our algorithm uses Voronoi tessellations during both simplification and refinement stages. During simplification, the algorithm constructs a first centroidal Voronoi tessellation of the vertices of the input mesh. The sites of the Voronoi cells are the vertices of the base mesh of the semi-regular output. During refinement, the new vertices added at each resolution level by regular subdivision are considered as new Voronoi sites. We then use the Lloyd relaxation algorithm to update their position, and finally we obtain uniform semi-regular meshes. Our algorithm also enables adaptive remeshing by tuning a threshold based on the mass probability of the Voronoi sites added by subdivision. Experimentation shows that our technique produces semi-regular meshes of high quality, with significantly less triangles than state of the art techniques.