Asymptotics of a non-planar rod in non-linear elasticity
Résumé
We study the asymptotic behavior of a non-linear elastic material lying in a thin neighborhood of a non-planar line when the diameter of the section tends to zero. We first estimate the rigidity constant in such a domain then we prove the convergence of the three-dimensional model to a one-dimensional model. This convergence is established in the framework of Γ-convergence. The resulting model is the one classically used in mechanics. It corresponds to a non-extensional line subjected to flexion and torsion. The torsion is an internal parameter which can eventually by eliminated but this elimination leads to a non-local energy. Indeed the non-planar geometry of the line couples the flexion and torsion terms.
Domaines
Mécanique [physics.med-ph]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...