Use of calcofluor white for detection, identification, and quantification of phytoplanktonic fungal parasites.
Résumé
We propose a routine protocol based on size fractionation of pelagic samples and the use of the fluorochrome calcofluor white (which binds to beta-1,3 and beta-1,4 polysaccharides) for diagnosing, identifying, and counting chitinaceous fungal parasites (i.e., the sporangia of chytrids) of phytoplankton. The protocol was applied to freshwater samples collected during different seasons (spring and summer/autumn) in two lakes whose trophic statuses varied. Because few samples were collected (i.e., two dates per site), the findings are considered preliminary and mainly a "proof of concept" rather than a valid comparison of sites versus seasons. The results from the proposed protocol indicate higher diversity of infected host and parasite communities than in previous studies. Chytrid epidemics were omnipresent, infecting diverse phytoplankton host communities, primarily diatoms, chlorophytes, and colonial and filamentous cyanobacteria. The diversity and numerical abundance of sporangia and of hosts, and the prevalence of infection (range, <1 to 24% of total host cells) as well, increased from the oligotrophic Lake Pavin to the eutrophic Lake Aydat, while the temporal changes in parasites were apparently more influenced by the host community composition. We conclude that the proposed protocol offers a valid method for the quantitative ecology of chytrid epidemics in aquatic ecosystems and food web dynamics.