The Directed Spanning Forest is almost surely a tree
Résumé
We consider the Directed Spanning Forest (DSF) constructed as follows: given a Poisson point process N on the plane, the ancestor of each point is the nearest vertex of N having a strictly larger abscissa. We prove that the DSF is actually a tree. Contrary to other directed forests of the literature, no Markovian process can be introduced to study the paths in our DSF. Our proof is based on a comparison argument between surface and perimeter from percolation theory. We then show that this result still holds when the points of N belonging to an auxiliary Boolean model are removed. Using these results, we prove that there is no bi-infinite paths in the DSF.
Domaines
Probabilités [math.PR]Origine | Fichiers produits par l'(les) auteur(s) |
---|