Uniqueness results in an extension of Pauli's phase retrieval problem - Archive ouverte HAL
Article Dans Une Revue Applied and Computational Harmonic Analysis Année : 2014

Uniqueness results in an extension of Pauli's phase retrieval problem

Résumé

In this paper, we investigate the uniqueness of the phase retrieval problem for the fractional Fourier transform (FrFT) of variable order. This problem occurs naturally in optics and quantum physics. More precisely, we show that if $u$ and $v$ are such that fractional Fourier transforms of order $\alpha$ have same modulus $|F_\alpha u|=|F_\alpha v|$ for some set $\tau$ of $\alpha$'s, then $v$ is equal to $u$ up to a constant phase factor. The set $\tau$ depends on some extra assumptions either on $u$ or on both $u$ and $v$. Cases considered here are $u$, $v$ of compact support, pulse trains, Hermite functions or linear combinations of translates and dilates of Gaussians. In this last case, the set $\tau$ may even be reduced to a single point ({\it i.e.} one fractional Fourier transform may suffice for uniqueness in the problem).
Fichier principal
Vignette du fichier
multiple00228.pdf (370.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00518472 , version 1 (17-09-2010)

Identifiants

Citer

Philippe Jaming. Uniqueness results in an extension of Pauli's phase retrieval problem. Applied and Computational Harmonic Analysis, 2014, 37, pp.413-441. ⟨10.1016/j.acha.2014.01.003⟩. ⟨hal-00518472⟩
363 Consultations
370 Téléchargements

Altmetric

Partager

More