Nonlinear Hybrid System Identification with Kernel Models - Archive ouverte HAL Access content directly
Conference Papers Year : 2010

Nonlinear Hybrid System Identification with Kernel Models

Fabien Lauer
Gérard Bloch
  • Function : Author
  • PersonId : 832207


This paper focuses on the identification of nonlinear hybrid systems involving unknown nonlinear dynamics. The proposed method extends the framework of [1] by introducing nonparametric models based on kernel functions in order to estimate arbitrary nonlinearities without prior knowledge. In comparison to the previous work of [2], which also dealt with unknown nonlinearities, the new algorithm assumes the form of an unconstrained nonlinear continuous optimization problem, which can be efficiently solved for moderate numbers of parameters in the model, as is typically the case for linear hybrid systems. However, to maintain the efficiency of the method on large data sets with nonlinear kernel models, a preprocessing step is required in order to fix the model size and limit the number of optimization variables. A support vector selection procedure, based on a maximum entropy criterion, is proposed to perform this step. The efficiency of the resulting algorithm is demonstrated on large-scale experiments involving the identification of nonlinear switched dynamical systems.
Fichier principal
Vignette du fichier
LauerBlochVidalCDC2010V2.pdf (611.97 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00514429 , version 1 (02-09-2010)
hal-00514429 , version 2 (16-09-2010)


  • HAL Id : hal-00514429 , version 2


Fabien Lauer, Gérard Bloch, René Vidal. Nonlinear Hybrid System Identification with Kernel Models. 49th IEEE Conference on Decision and Control, CDC 2010, Dec 2010, Atlanta, GA, United States. pp.696-701. ⟨hal-00514429v2⟩
393 View
334 Download


Gmail Facebook Twitter LinkedIn More