Infrared study of astrophysical ice analogues irradiated by swift nickel ions
Résumé
Water, carbon oxide, carbon dioxide, and ammonia ices are known to be pervasive constituents of the solar system and the interstellar medium. These ices and ice-covered surfaces are exposed to bombardment by energetic projectiles like photons, electrons, and ions. Laboratory experiments have been carried out to study the effects of such irradiation. However, there is a clear lack of information about the interaction of heavy ion components of solar/stellar wind and galactic cosmic rays (e.g. Fe) with ices in the keV to GeV energy range. The objective of this work is to study the effects produced in astrophysical ices by highly charged nickel ions at relatively high energy (~50–500 MeV) in the electronic energy loss regime, and to compare them with those produced by protons, photons, and electrons. Our results for CO2 and CO indicate that sputtering induced by heavy ions can be an important mechanism to desorb molecules in astrophysical environments.