Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation - Archive ouverte HAL
Article Dans Une Revue Applicable Analysis Année : 2013

Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation

Résumé

This paper presents an inverse problem for the nonlinear 1-d Kuramoto-Sivashinsky (K-S) equation. More precisely, we study the nonlinear inverse problem of retrieving the anti-diffusion coefficient from the measurements of the solution on a part of the boundary and at some positive time everywhere. Uniqueness and Lipschitz stability for this inverse problem are proven with the Bukhgeim-Klibanov method. The proof is based on a global Carleman estimate for the linearized K-S equation.
Fichier principal
Vignette du fichier
BCCM_FinalVersion.pdf (216.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00510506 , version 1 (19-08-2010)
hal-00510506 , version 2 (06-10-2011)
hal-00510506 , version 3 (19-09-2012)

Identifiants

Citer

Lucie Baudouin, Eduardo Cerpa, Emmanuelle Crépeau, Alberto Mercado. Lipschitz stability in an inverse problem for the Kuramoto-Sivashinsky equation. Applicable Analysis, 2013, 92 (10), pp. 2084-2102. ⟨hal-00510506v3⟩
305 Consultations
329 Téléchargements

Altmetric

Partager

More