The multi-item capacitated lot-sizing problem with setup times and shortage costs
Résumé
We address a multi-item capacitated lot-sizing problem with setup times and shortage costs that arises in real-world production planning problems. Demand cannot be backlogged, but can be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation is presented. Our approach in this paper is to propose some classes of valid inequalities based on a generalization of Miller et al. [A.J. Miller, G.L. Nemhauser, M.W.P. Savelsbergh, On the polyhedral structure of a multi-item production planning model with setup times, Mathematical Programming 94 (2003) 375–405] and Marchand and Wolsey [H. Marchand, L.A. Wolsey, The 0–1 knapsack problem with a single continuous variable, Mathematical Programming 85 (1999) 15–33] results. We also describe fast combinatorial separation algorithms for these new inequalities. We use them in a branch-and-cut framework to solve the problem. Some experimental results showing the effectiveness of the approach are reported.
Domaines
Recherche opérationnelle [math.OC]Origine | Fichiers produits par l'(les) auteur(s) |
---|