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Abstract

We address a multi-item capacitated lot-sizing problem with setup times and shortage costs
that arises in real-world production planning problems. Demand cannot be backlogged, but can
be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation
is presented. Our approach in this paper is to propose some classes of valid inequalities based on
a generalization of Miller et al. [26] and Marchand and Wolsey [24] results. We also describe fast
combinatorial separation algorithms for these new inequalities. We use them in a branch-and-cut
framework to solve the problem. Some experimental results showing the effectiveness of the ap-
proach are reported.

Keywords: multi-item, capacitated lot-sizing, setup times, shortage costs, production planning,
mixed integer programming, branch-and-cut.

Introduction

The Multi-item Capacitated Lot-sizing Problem with with Setup times and Shortage costs called
MCLSSP is a production planning problem in which there is a time-varying demand for a set of
N items denoted I = {1, 2, · · · , N} over T periods. The production should satisfy a restricted
capacity and must take into account a set of additional constraints. Indeed, launching the pro-
duction of an item i at a given period t for a demand requirement dit involves a variable capacity
vit and a fixed consumption of resource fit usually called setup time in lot-sizing literature. The
total available capacity at period t is ct. The production should also satisfy lot-sizing constraints.
For each period t, an inventory cost γit is attached to each item i as well as a variable unit
production cost αit and a setup cost βit. The problem has the distinctive feature of allowing
requirement shortages because we deal with problems with tight capacities. Indeed, when we are
in lack of capacity to produce the total demand, we try to spread the capacity among the items by
minimizing the total amount of demand shortages. Thus, we introduce in the model a unit cost
parameter ϕit for item i at period t for the requirement not met regarding the demand. These
costs should be viewed as penalty costs and their values are very high in comparison with other
cost components.
To try to meet the demand for an item i at period t, we could anticipate the production over
some periods of time. Therefore, σit denote the last period at which an item i produced at period
t can be consumed.
The problem MCLSSP is to find a production planning that minimizes the demand shortage, the
setup, the inventory and the production costs. Originally, the motivation for designing a branch-
and-cut algorithm to solve the MCLSSP was to try to deal with real-world instances where the
capacities were tight and were the most important objective was to try to meet the maximum
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amount of client’s needs. In these industrial applications, postponing the demand is frequently
prohibited. Our results are integrated in an APS1 software.

Florian et al. [15] and Bitran and Yanasse [7] have shown that the single-item capacitated
lot-sizing problem is NP-hard, even for many special cases. Chen and Thizy [10] have proved that
multi-item capacitated lot-sizing problem (MCLSP) with setup times is strongly NP-hard.

Since the seminal papers by Wagner and Within [38] and Manne [23] in the late 1950s, a lot
of research has been done on lot-sizing problems. The single-item problem has been given special
interest for its relative simplicity and for its importance as a sub-problem of some more complex
lot-sizing problems. For a complete review, the reader can refer to [9].

Although production planning models involving multiple items, restrictive capacities and sig-
nificant setup times occur frequently in industrial situations and have often been studied in the
literature, obtaining optimal and sometimes even feasible solutions remains challenging. Trigeiro
et al. [36] were among the firsts to try to solve such models. They proposed a lagrangean relax-
ation based heuristic to solve the single-machine, multi-item, capacitated lot-sizing problem with
setup times to obtain near-optimal solutions. Since the lagrangean solutions are usually infeasible,
they used a smoothing heuristic in order to obtain feasible production plans. However, we can
notice that for all the instances with tight capacities, they were not able to find feasible solutions.

Belvaux and Wolsey [6], Leung et al. [19] and Pochet and Wolsey [32] proposed exact methods
to solve multi-item capacitated lot-sizing problems by strengthening the LP formulations with
valid inequalities and then using a mixed integer programming (MIP) solver. Barany et al. [4]
have defined some inequalities for the uncapacitated lot-sizing problem. Miller et al. [26] have
studied the polyhedral structure of some capacitated production planning problems with setup
times. We can also mention the work of Marchand and Wolsey [24] for the 0-1 knapsack problem
which appears as a relaxation of a number of structured MIP problems such as the MCLSP
problem.

There are few references dealing with lot-sizing problems with shortage costs. Recently, Sand-
bothe and Thompson [35] addressed a single-item uncapacitated lot-sizing problem with shortage
costs. The authors proposed an O(T 3) forward dynamic programming algorithm to solve the
problem. Aksen et al. [3] proposed a dynamic programming method to solve the same problem in
O(T 2). Loparic et al. [21] proposed valid inequalities for the single-item uncapacitated lot-sizing
problem with sales instead of fixed demands and lower bounds on stock variables. To the best of
our knowledge, this is the first paper that deals with setup times constraints and shortage costs for
the multi-item capacitated lot-sizing problem. Nevertheless, we can cite the following results for
solving problems where demand cannot be met at every period. Dixon et al. [13] deal with lack of
capacity by considering overtimes. The capacity constraint is expanded by making extra capacity
available at a certain cost. The multi-item capacitated lot-sizing problem with setup times and
overtime decisions is investigated by Diaby et al. [12], Özdamar and Birbil [28] and Özdamar and
Bozyel [29]. Another class of methods allows backlog. Here demand must be satisfied, but the
items can be produced later at an extra cost. We can cite the work of Pochet and Wolsey [31]
and Zangwill [41]. In all these cases, the demand must be satisfied and the amount of lost sales
for each item at each period is not given. The only information that we have is the amount of
missing capacity at each period to satisfy the amount of original and backlogged demands.

The main contributions of this paper are twofold. First, we show that the results obtained
from considering relaxations based on single-period sub-model can be used to derive new valid
inequalities for the MCLSSP problem. These results are derived from Miller et al. [26] previous
work on the polyhedral structure of the single-period relaxation of the multi-item capacitated
lot-sizing problem. Second, we use these inequalities within a branch-and-cut framework to find
near optimal solutions.

An outline of the remainder of the paper follows. Sections 1 and 2 describe MIP formulations
of the MCLSSP problem and its single-period relaxation. In Sections 3 and 5 we state results
concerning the generalization of the (l, S), cover and reverse cover valid inequalities. In Section
6, we show that these inequalities can be strengthened using a lifting procedure. Separation
heuristics are presented in Sections 4, 7 and 8. Finally, computational results are given in Section
9 to show the effectiveness of using these inequalities in a branch-and-cut algorithm.

1Advance Planning and Scheduling.
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1 Formulation of the MCLSSP problem

In this section we present a MIP formulation of the MCLSSP problem, which is an extension of
the classical formulation of the MCLSP problem previously studied by Miller [25] and Trigeiro et
al. [36]. This model is usually called aggregated model, see [9]. Other formulations are studied
in the literature. We can mention the facility location-based formulation introduced by Krarup
and Bilde [18] and the shortest path formulation proposed by Evans [14].

In the sequel of the paper, we consider that i = 1, . . . , N and t = 1, . . . , T . We set xit as the
quantity of item i produced at period t. To deal with the fixed setup times and costs, we need
also to define yit as a binary variable equal to 1 if item i is produced at period t (i.e. if xit > 0).
The variable sit is the inventory value for item i at the end of period t. The demand shortage for
item i at period t is modeled by a non-negative variable rit added to the production variables xit
with a very high unit penalty cost in the objective function, because the main goal is to satisfy
the customer and thus to have the minimum amount of the requirements not met. We can notice
that rit = −(si,t−1 + xit) + dit if rit > 0 and 0 otherwise.

min

N�
i=1

T�
t=1

αitxit + βityit + γitsit + ϕitrit (1)

subject to:

xit + rit − sit + si,t−1 = dit, i = 1, . . . , N, t = 1, . . . , T. (2)

N�
i=1

vitxit +

N�
i=1

fityit ≤ ct, t = 1, . . . , T. (3)

xit ≤ min

�
ct − fit
vit

,

σit�
t′=t

dit′

�
yit, i = 1, . . . , N, t = 1, . . . , T. (4)

rit ≤ dit, i = 1, . . . , N, t = 1, . . . , T (5)

xit, sit, rit ≥ 0, i = 1, . . . , N, t = 1, . . . , T (6)

yit ∈ {0, 1} , i = 1, . . . , N, t = 1, . . . , T (7)

The objective function (1) minimizes the total cost induced by the production plan (unit
production costs, inventory costs, shortage costs and setup costs). Constraints (2) are the flow
conservation of the inventory through the planning horizon. Constraints (3) are the capacity con-
straints, the overall consumption must remain lower than the available capacity. If we produce an
item then the production must not exceed a maximum production level, this condition is ensured
by constraints (4). Indeed, the maximum production is the minimum between the maximum
quantity of the item that we can produce and the total requirement on section [t, . . . , σit] of the
horizon. We recall that σit denote the last period at which an item i produced at period t can be
consumed. Constraints (5) define upper bounds on the requirement not met for item i on period
t. Constraints (6) and (7) characterize the variable’s domain: xit, sit and rit are non-negative for
i = 1, . . . , N and t = 1, . . . , T and yit is a binary variable for i = 1, . . . , N and t = 1, . . . , T .

In the sequel of the paper, we refer to valid inequalities for the set defined by (2)− (7) as valid
for MCLSSP.

3



2 Single-period relaxation of the MCLSSP problem

Based on the formulation of the MCLSSP problem described in section 1, we define a simplified
sub-model obtained by considering a single time period relaxation. This is particularly useful to
derive valid inequalities for the MCLSSP problem. The goal of this relaxation is not to solve each
period separately by considering only the demand of the current period but is to provide strong
valid inequalities for the single-period problem that are also valid for the initial problem taking
into account aggregated demands. This is done by allowing anticipations on production.

This model is called the single-period relaxation of the MCLSSP with preceding inventory
[25]. Our approach is similar to the one used by Constantino [11] and Miller [25] to derive a set
of valid inequalities for the MCLSP problem based on a single-period relaxation.

In this relaxation, the production over a given period could satisfy the requirement of a section
of consecutive periods. Consequently, for each period t = 1, . . . , T and each item i = 1, . . . , N
we use the parameter σit previously defined with σit = 1, . . . , T . This will enable us to create a
mathematical model for each period t = 1, . . . , T which captures the interaction between the tight
capacity in one hand and the requirements, the productions and the setups on the other hand
from period t to σit, for each item i = 1, . . . , N .
Here our goal is to derive valid inequalities for MCLSSP by considering simplified models obtained
from a single time period relaxation with preceding inventory.

Let us denote: δia,b =
�b
t=a dit. One simple family of valid inequalities is given by

Proposition 1. The inequalities

xit +

σit�
t′=t

rit′ +

��si,t−1 +

σit�
t′=t+1

δit′,σit
yit′

�� ≥ δit,σit
, i = 1, . . . , N, t = 1, . . . , T. (8)

are valid for MCLSSP.

Proof. Summing the constraints (2) over the section of horizon [t, . . . , σit] gives:

σit�
t′=t

(xit′ + rit′)− si,σit + si,t−1 =

σit�
t′=t

dit′ , i = 1, . . . , N, t = 1, . . . , T. (9)

The variable xit can be redefined by considering the period where the production is really
consumed. This reformulation is called the facility location-based formulation introduced initially
by Krarup and Bilde [18]. Therefore, we denote witt′ with t′ ∈ [t, σit] the quantity of the item i
produced at period t (t �= 0) and consumed at period t′. The variables wi0t then represent the
opening inventory of item i at the beginning of the horizon which will be consumed at period t.
We will have:

xit =
T�
t′=t

witt′ , i = 1, . . . , N, t = 1, . . . , T. (10)

and

sit =
t�

t′=0

T�
t′′=t+1

wit′t′′ , i = 1, . . . , N, t = 1, . . . , T. (11)

By replacing (10) and (11) in (9), we get for each i = 1, . . . , N and t = 1, . . . , T :

si,t−1 + xit +

σit�
t′=t+1

T�
t′′=t′

wit′t′′ +

σit�
t′=t

rit′ −
σit�
t′=0

T�
t′′=σit+1

wit′t′′ =

σit�
t′=t

dit′ (12)

Moreover:
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σit�
t′=t+1

T�
t′′=t′

wit′t′′ =

σit�
t′=t+1

σit�
t′′=t′

wit′t′′ +

σit�
t′=t+1

T�
t′′=σit+1

wit′t′′ (13)

and:

σit�
t′=0

T�
t′′=σit+1

wit′t′′ =

t�
t′=0

T�
t′′=σit+1

wit′t′′ +

σit�
t′=t+1

T�
t′′=σit+1

wit′t′′ (14)

By replacing (13) and (14) in (12), we get for each i = 1, . . . , N and t = 1, . . . , T :

si,t−1 + xit +

σit�
t′=t+1

σit�
t′′=t′

wit′t′′ −
t�

t′=0

T�
t′′=σit+1

wit′t′′ +

σit�
t′=t

rit′ =

σit�
t′=t

dit′ (15)

By definition of variables wit′t′′ , we know that:

1. wit′t′′ ≤ dit′′yit′
2. wi0t ≤ dit
3.
�t
t′=0

�T
t′′=σit+1 wit′t′′ = 0

Consequently, from (15), we get for each i = 1, . . . , N and t = 1, . . . , T :

si,t−1 + xit +

σit�
t′=t+1

σit�
t′′=t′

dit′′yit′ +

σit�
t′=t

rit′ ≥
σit�
t′=t

dit′

Furthermore,

σit�
t′′=t′

dit′′ = δit′,σit

Finally,

xit +

σit�
t′=t

rit′ + si,t−1 +

σit�
t′=t+1

δit′,σit
yit′ ≥ δit,σit

In the sequel of the paper, we denote by SPMCLSSP the Single-Period relaxation of the prob-
lem MCLSSP where (2) is replaced by (8). As previously mentioned, we refer to valid inequalities
for the set defined by (3)− (8) as valid for SPMCLSSP.

The expression si,t−1 +
�σit

t′=t+1 δ
i
t′,σit

yit′ can be considered as being the ending inventory of

item i at period t − 1 and denoted 	si,t−1. Thus, we have 	si,t−1 = si,t−1 +
�σit
t′=t+1 δ

i
t′,σit

yit′ .

Similarly, we note
�σit
t′=t rit′ by 	rit and δit,σit

by 	dit. The inequalities (8) are equivalent to:

xit + 	rit + 	sit ≥ 	dit, i = 1, . . . , N, t = 1, . . . , T. (16)

Since we work on a single-period in SPMCLSSP and given that each period will be considered
separately, it may be more convenient to remove the temporal index in the previous expression
to facilitate the reading of the remaining mathematical formulations.

The inequalities (8) are written:

xi + 	ri + 	si ≥ 	di, i = 1, . . . , N. (17)

5



3 Valid (l, S) inequalities for the problem SPMCLSSP

To introduce the (l, S) inequalities for SPMCLSSP, let us define the following problem denoted
MCLSP by:

min
N�
i=1

T�
t=1

αitxit + βityit + γitsit (18)

subject to:

xit − sit + si,t−1 = dit, i = 1, . . . , N, t = 1, . . . , T (19)

N�
i=1

xit +
N�
i=1

fityit ≤ ct, t = 1, . . . , T. (20)

xit, sit ≥ 0, i = 1, . . . , N, t = 1, . . . , T (21)

yit ∈ {0, 1} , i = 1, . . . , N, t = 1, . . . , T (22)

The problem MCLSP is a simplified version of MCLSSP with vit equal to 1 and no demand
shortage allowed, so that the variables rit are set to zero.

We denote:

• SPMCLSP the single-period relaxation of MCLSP with (19) replaced by: xi + si ≥ di. We
recall that the temporal index is removed.

• ULSP the uncapacitated version of the single-item relaxation of MCLSP. In this problem, the
cacapity constraints linking the items are removed. Thus, each item is considered separately
and the item index is useless.

Barany et al. [4, 5] proved that a complete polyhedral description of the convex hull of the ULSP is
given by some inequalities from the basic LP relaxation of the standard MIP formulation together
with the (l, S) inequalities. The (l, S) inequalities are expressed as :�

t∈S
xt +

�
t∈S̄

dtlyt ≤ d1l

Where l ∈ {0, 1, . . . , T}, S ⊂ {0, 1, . . . , l}, S̄ = {0, 1, . . . , l} \ S and dtt′ =
�t′
k=t dk. The

authors reported good computational results for multi-item capacitated lot-sizing problems using
the (l, S) inequalities within a branch-and-cut scheme.

Proposition 2. (l, S) inequalities for the SPMCLSP, (Miller et al. [26])
If c ≥ fi + di then the inequalities

si + diyi ≥ di, i = 1, . . . , N (23)

are facet-inducing for the SPMCLSP.

Pochet and Wolsey [33] introduced the (k, l, S, I) inequalities for the single-item lot-sizing problem
with constant capacity and they showed that these are nontrivial facets of its convex hull. The
(k, l, S, I) inequalities can be expressed in the following general form:

st−1 +
�
t∈U

xt +
�
t∈V

Btyt ≥ B0

where for any k and l such that 1 ≤ k ≤ l ≤ T , (U, V ) is any partition of [k, . . . , l], B0 ∈ R+

and Bt ∈ R+ (t ∈ V ). Bt are defined with respect to the demand and the capacity. For more
details, the reader can refer to [33].
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Without loss of generality, we can modify the inequalities (8) in order to have a structure sim-
ilar to the (k, l, S, I) inequalities, by replacing δit′,σit

yit′ by xit′ for values of t′ in any subset of
[t+ 1, . . . , σit].

Proposition 3. Given a partition (U, V ) of the interval [t+ 1, . . . , σit], the inequalities

xit +

σit�
t′=t

rit′ +



si,t−1 +

�
U

δit′,σit
yit′ +

�
V

xit′

�
≥ δit,σit

, i = 1, . . . , N, t = 1, . . . , T (24)

are valid for MCLSSP.

Proof. The proof is similar to the proof of proposition 1.

The inequalities (24) are called the (l, S) inequalities for the problem SPMCLSSP.

4 Separation heuristic for (l, S) inequalities

In this section, we present a fast combinatorial separation heuristic to create (l, S) inequalities for
the MCLSSP problem. According to the proposition 3, the (l, S) inequalities (24) are valid for
MCLSSP. We recall the expression of these inequalities:

xit +

σit�
t′=t

rit′ +



si,t−1 +

�
U

δit′,σit
yit′ +

�
V

xit′

�
≥ δit,σit

, i = 1, . . . , N, t = 1, . . . , T

with (U,V ) a partition of [t+ 1, . . . , σit].

The idea of the separation heuristic is to create a set U ⊂ [t, . . . , σit] for each item i and
for each period t for generating an (l, S) inequality for the MCLSSP problem. We add t′ to U
if δit′,σit

yit′ < xit′ or to the set V otherwise. We illustrate this principle in the following algorithm:

Algorithm 1 Separation heuristic for (l, S) inequalities

1: t← 1, i← 1
2: while (i ≤ N) do
3: while (t ≤ T ) do
4: t′ ← t+ 1
5: while (t′ ≤ σit) do
6: if δit′,σit

y∗it′ < x∗
it′ then

7: U ← U ∪ {t′}
8: else
9: V ← V ∪ {t′}

10: end if
11: t′ ← t′ + 1
12: end while
13: if (The inequality (24) based on S,U and T ′ is violated) then
14: Add the inequality (24) at the current node.
15: end if
16: t← t+ 1
17: end while
18: i← i+ 1
19: end while

We can notice that the separation heuristic for the (l, S) inequalities is in O(NT 2).
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5 Cover and reverse cover inequalities for the SPM-
CLSSP

In this section, we generalize some results on the cover and reverse cover inequalities defined by
Miller et al. [26].

Definition 1. (Cover)
A subset of items S of I is known as ”cover” of the problem SPMCLSSP if:

λS =
�
i∈S

�
fi + vi 	di
− c ≥ 0 (25)

For the cover S, λs expresses the lack of capacity when all the items of S are produced. Indeed,
if λs > 0 then the total requirements of all the items of S are strictly higher than the available
capacity.

Proposition 4. (Cover inequalities)

The inequality

�
i∈S

vi (	si + 	ri) ≥ λS +
�
i∈S

max
�
−fi, vi 	di − λS� (1− yi) (26)

is valid for SPMCLSSP.

Proof. The proof is similar to the one presented in Miller et al. [26] by adding the demand
shortage variables 	ri as well as the variable resource consumption vi.

The inequalities (17) can be written:

	si + 	ri ≥ 	di − xi, i = 1, . . . , N.

Then: �
i∈S

vi	si +
�
i∈S

vi	ri ≥�
i∈S

vi 	di −�
i∈S

vixi

If all the items of S are produced, yi = 1 ∀i ∈ S, from (3) we get:�
i∈S

vixi ≤ c−
�
i∈S

fi

Then:

�
i∈S

vi	si +
�
i∈S

vi	ri ≥�
i∈S

vi 	di −
c−�
i∈S

fi

�
=
�
i∈S

�
vi 	di + fi



− c

By replacing
�
i∈S

�
vi 	di + fi



− c by λS we get:

�
i∈S

vi (	si + 	ri) ≥ λS (27)

We define a set S0 = {i ∈ S : yi = 0} that represents the items in S that are not produced.

If
��S0
�� = 1, we have exactly one item i′ ∈ S such that yi′ = 0.

From (27) we can write:

�
i∈S

vi (	si + 	ri) ≥ λS − fi′ (28)

We know that:
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�
i∈S

vi (	si + 	ri) ≥ vi′ (	si′ + 	ri′) ≥ vi′ 	di′ (29)

Thus, from (28) and (29) we can conclude that:

�
i∈S

vi (	si + 	ri) ≥ λS + max
�
−fi′ , vi′ 	di′ − λS� (30)

Let us consider now the case where
��S0
�� > 1. The inequality (30) can easily be generalized by

considering the items in S0 one by one. Hence, we get:

�
i∈S

vi (	si + 	ri) ≥ λS +
�
i∈S0

max
�
−fi, vi 	di − λS� (31)

The inequality (31) can be generalized for the set S by introducing the term (1− yi) to take
into account the production of the item. Hence, we have:�

i∈S
vi (	si + 	ri) ≥ λS +

�
i∈S

max
�
−fi, vi 	di − λS� (1− yi)

The previous inequalities can be strengthened by a lifting procedure described in what follows.

Proposition 5. (A second form of cover inequalities)

Given a cover S of SPMCLSSP, and an order of items i ∈ S such that f[1]+v[1] 	d[1] ≥ · · · ≥ f[|S|]+
v[|S|] 	d[|S|]. Let T = I \ S, and (T ′, T ′′) be any partition of T . We define µ1 = f[1] + v[1] 	d[1] − λS.
If |S| ≥ 2 and f[2] + v[2] 	d[2] ≥ λS, the inequality

�
i∈S

vi (	si + 	ri) ≥ λS +
�
i∈S

max
�
−fi, vi 	di − λS� (1− yi) +

λS

f[2] + v[2] 	d[2]

�
i∈T ′

(vixi − (µ1 − fi) yi) (32)

is valid for SPMCLSSP.

Proof. Let (x∗, y∗, 	s∗, 	r∗) any point of the convex hull of SPMCLSSP. Let S0 = {i ∈ S : y∗i = 0},
S1 = {i ∈ S : y∗i = 1} and T̄ ′ = {i ∈ T ′ : y∗i = 1}. We consider three cases:
If
��T̄ ′�� = 0, then we have from proposition (4) that the inequality (32) is valid .

If
��T̄ ′�� = 1, then we assume that T̄ ′ = {i′}; to show that the point (x∗, y∗, 	s∗, 	r∗) satisfies the

inequality (32), it is sufficient to show that:

�
i∈S

vi (	s∗i + 	r∗i ) +
�
i∈S

max
�
−fi, vi 	di − λS� y∗i ≥ λS +

�
i∈S

max
�
−fi, vi 	di − λS�+

λS

f[2] + v[2] 	d[2]

(vi′x
∗
i′ − (µ1 − fi′ )) (33)

We know that:

�
i∈S

vi (	s∗i + 	r∗i )+�
i∈S

max
�
−fi, vi 	di − λS� y∗i ≥ min

xi′=x∗i′ ,yi′=1

��
i∈S

vi (	si + 	ri) +
�
i∈S

max
�
−fi, vi 	di − λS� yi�

Let us consider the following problem:

min
xi′=x∗i′ ,yi′=1

��
i∈S

vi (	si + 	ri) +
�
i∈S

max
�
−fi, vi 	di − λS� yi� (34)
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We will prove that the optimal solution of this problem has a value higher or equal to the
right member of the inequality (33).

Let rS =
����i ∈ S : fi + vi 	di > λS

���� and Aba =
�b
a

�
f[i] + v[i] 	d[i]



.

If we define:

ϕS (u) =

�������
u, if 0 ≤ u ≤ A|S|

rS+1

A
|S|
rS+1 + (rS − j)λS, if A

|S|
j+1 ≤ u ≤ A|S|

j − λS, j = 1, . . . , rS

A
|S|
rS+1 + (rS − j)λS +

�
u−

�
A

|S|
j − λS




, if A

|S|
j − λS ≤ u ≤ A|S|

j , j = 2, . . . , rS

(35)

then the optimal solution of the minimization problem (34) is given by:

min
xi′=x∗i′ ,yi′=1

��
i∈S

vi (	si + 	ri) +
�
i∈S

max
�
−fi, vi 	di − λS� yi� =

�
i∈S

vi 	di + ϕS (c− (fi′ + vi′x
∗
i′)) (36)

The proof is an obvious generalization of the result presented in [26]. We refer the reader to
the paper of Miller et al. [26] for more details. A simple representation of ϕS is given in Fig. 1.

ϕS(u)

A
|S|
rS

+ (rS − k + 1)λS

A
|S|
rS

+ (rS − k)λS

A
|S|
rS

+ λS

A
|S|
rS

uA
|S|
k

A
|S|
rS−1 − λS

A
|S|
k+1

A
|S|
k

− λS A
|S|
k−1 − λS

A
|S|
rS

A
|S|
rS+1

A
|S|
rS

− λS

Figure 1: Function ϕS .

Now, we need to prove that:

�
i∈S

vi 	di − ϕS (c− (fi′ + vi′x
∗
i′)) ≥ λS +

�
i∈S

max
�
−fi, vi 	di − λS�+

λS

f[2] + v[2] 	d[2]

(vi′x
∗
i′ − (µ1 − fi′)) (37)

To do that, we use the following property, which is also a generalization of a result presented
in Miller et al. [26]):

max
0≤xi≤ c−fi

vi

�
ϕS (c− (fi + vixi)) +

λS

f[2] + v[2] 	d[2]

(vixi − (µ1 − fi))
�

=
�

i∈S\[1]
min

�
fi + vi 	di, λS� (38)

Moreover, we have:�
i∈S

vi 	di = v[1] 	d[1] +
�

i∈S\[1]
vi 	di

�
i∈S

vi 	di = v[1] 	d[1] +
�

i∈S\[1]
max

�
−fi, vi 	di − λS�+

�
i∈S\[1]

min
�
fi + vi 	di, λS�

Using the expression (38), we have:
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�
i∈S

vi 	di = v[1] 	d[1] +
�

i∈S\[1]
max

�
−fi, vi 	di − λS�+

max
0≤xi′≤

c−f
i′

v
i′

�
ϕS (c− (fi′ + vi′xi′)) +

λS

f[2] + v[2] 	d[2]

(vi′xi′ − (µ1 − fi′))
�

�
i∈S

vi 	di ≥ v[1] 	d[1] +
�

i∈S\[1]
max

�
−fi, vi 	di − λS�+

ϕS (c− (fi′ + vi′x
∗
i′)) +

λS

f[2] + v[2] 	d[2]

(vi′x
∗
i′ − (µ1 − fi′))�

i∈S
vi 	di ≥ v[1] 	d[1] − λS + λS +

�
i∈S\[1]

max
�
−fi, vi 	di − λS�+

ϕS (c− (fi′ + vi′x
∗
i′)) +

λS

f[2] + v[2] 	d[2]

(vi′x
∗
i′ − (µ1 − fi′)) (39)

Since v[1] 	d[1] − λS ≥ −f[1] (we know that : f[1] + v[1] 	d[1] ≥ λS), v[1] 	d[1] − λS can be replaced

by max
�
−f[1], v[1] 	d[1] − λS

�
. By rewriting the expression (39), we get (37). Then, we derive the

inequality (33).

If
��T̄ ′�� > 1, then the expression (33) can be easily generalized by considering the items which

belong to T̄ ′ one by one. We get then the inequality (32).

In what follows, we describe another class of valid inequalities based on the reverse cover set.

Definition 2. (Reverse Cover)
A subset S of I is known as reverse cover of SPMCLSSP if:

µS = c−
�
i∈S

�
fi + vi 	di
 ≥ 0 (40)

For a reverse cover S, µS expresses the available capacity left when the total requirement for
each item of S is produced.

Proposition 6. Let S be a reverse cover of SPMCLSSP, T = I \S and (T ′, T ′′) be any partition
of T . The inequality

�
i∈S

vi (	si + 	ri) ≥ 
�
i∈S

�
fi + vi 	di
��

i∈T ′
yi −

�
i∈S

fi (1− yi)−
�
i∈T ′

((c− fi) yi − vixi) (41)

is valid for SPMCLSSP.

Proof. The proof presented here is similar to the one described in Miller et al. [26]. In the fol-
lowing, we take into account the demand shortage variables 	ri as well as the variable resource
consumption vi.
Let (x∗, y∗, 	s∗, 	r∗) be any point of the convex hull of SPMCLSSP.
We have to consider three cases:
If y∗i = 0 for all i ∈ T ′, then the inequality is valid, because

�
i∈S vi (	s∗i + 	r∗i ) ≥ −�i∈S fi (1− 	y∗i ).

Let T̄ ′ =
�
j ∈ T ′ : y∗j = 1

�
If
��T̄ ′�� = 1, we assume that T̄ ′ = {i′}
From (3) we have:

c− fi′ ≥
�
i∈S

(vix
∗
i + fiy

∗
i ) + vi′x

∗
i′

From (17) we also have:

11



x∗
i ≥ 	di − 	s∗i − 	r∗i

Consequently, we get:

c− fi′ ≥
�
i∈S

�
vi
�	di − 	s∗i − 	r∗i 
+ fiy

∗
i



+ vi′x

∗
i′

Which gives: �
i∈S

vi (	s∗i + 	r∗i ) ≥�
i∈S

vi 	di +
�
i∈S

fiy
∗
i − ((c− fi′)− vi′x∗

i′)

The inequality

�
i∈S

vi (	s∗i + 	r∗i ) ≥

�
i∈S

�
fi + vi 	di
�−�

i∈S
fi (1− y∗i )− ((c− fi′)− vi′x∗

i′) (42)

is thus valid for SPMCLSSP.
If
��T̄ ′�� > 1, the inequality (42) can be easily generalized by considering the items of T̄ ′ one by

one. The inequality (41) follows.

6 Lifting cover and reverse cover inequalities

In this section, we will strengthen the valid inequalities by using superadditive functions for an
iterative improvement. We refer the reader to [17] and [39] for a detailed description of lifting
procedures using superadditive functions.

Our work is based on Marchand and Wolsey [24] work on the continuous knapsack problem,
as well as the adaptations carried out by Miller et al. [26] for the problem (P̄ r) in order to lift
cover and reverse cover inequalities for the SPMCLSSP problem.

6.1 The 0-1 continuous knapsack problem

Let us define the following problem:

Y =

�
(y, s) ∈ {0, 1}n ×R1

+ :
�
j∈J

ajyj ≤ b+ s.

�
(43)

With: J = {1, . . . , n} , aj ∈ Z+, j ∈ J and b ∈ Z+.
Let ({j′} , C,D) be a cover pair for Y such that:

• C ∩D = {j′} , C ∪D = J
• λC =

�
j∈C aj − b > 0

• aj′ > λC

We can notice that µD = aj′ − λC =
�
j∈D aj −

��
j∈J aj − b



> 0. C is thus a cover set

and D is a reverse cover set.
We will now recall main results on the cover and reverse cover inequalities defined for this

problem.

Proposition 7. (Continuous cover inequalities, Marchand and Wolsey [24])
Let ({j′} , C,D) be a cover pair for Y . We consider an order of the elements of C such that

a[1] ≥ · · · ≥ a[rC ] where rC is the number of elements of C with aj > λC . Let us denote A0 = 0

and Aj =
�j
p=1 a[p], j = 1, . . . , rC . We set:

φC (u) =

�����
(j − 1)λC , if Aj−1 ≤ u ≤ Aj − λC , j = 1, . . . , rC

(j − 1)λC + [u− (Aj − λC)] , if Aj−1 − λC ≤ u ≤ Aj , j = 1, . . . , rC

(rC − 1)λC + [u− (ArC − λC)] , if ArC − λC ≤ u
(44)

12



The inequality

�
j∈C

min (λC , aj) yj +
�
D\j′

φC (aj) yj ≤
�

j∈C\j′
min (λC , aj) + s (45)

is valid for Y and defines a facet of conv(Y ).

A simple representation of φC is given in Fig. 2.

(k − 1)λC

λC

A1 − λC A1 Ak−1A2 − λC Ak − λCA0

φC(u)

u

Figure 2: Function φC .

Proposition 8. (Continuous reverse cover inequalities, Marchand and Wolsey [24])
Let ({j′} , C,D) be a cover pair for Y . We consider an order of the elements of D such that

a[1] ≥ · · · ≥ a[rD] where rD is the number of elements of D with aj > µD, where µD = aj′ − λC.

Let A0 = 0 and Aj =
�j
p=1 a[p], j = 1, . . . , rD. We set:

ψD (u) =

�����
u− jµD , if Aj ≤ u ≤ Aj+1 − µD, j = 0, . . . , rD − 1

Aj − jµD, if Aj − µD ≤ u ≤ Aj , j = 1, . . . , rD − 1

ArD − rDµD, if ArD − µD ≤ u
(46)

The inequality

�
j∈D

(aj − µD) yj +
�

j∈C\j′
ψD (aj) yj ≤

�
j∈C\j′

ψD (aj) + s (47)

is valid for Y and defines a facet of conv(Y ).

A simple representation of ψC is given in Fig. 3.

6.2 Lifting cover inequalities for the SPMCLSSP problem

In what follows, we use the results of Marchand and Wolsey [24] to obtain valid inequalities
stronger than (26). Let us recall that:

• S is a cover for the SPMCLSSP problem.

• T = I \ S.

• T ′, T ′′ is a partition of T .

• U ⊂ T ′′.
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Ak+1uA1A0 A1 − µD A2 Ak Ak+1 − µD

A1 − µD

ψD(u)

A2 − 2µD

Ak − kµD

Ak+1 − (k + 1)µD

A2 − µD

Figure 3: Function ψD.

From the constraints (3) and (17), we can write:�
i∈S∪U

�
fiyi + vi 	di − vi	si − vi	ri
 ≤ c

By adding
�
i∈S∪U vi 	diyi to both sides of this inequality, we see that:�

i∈S∪U
vi 	diyi +

�
i∈S∪U

�
fiyi + vi 	di − vi	si − vi	ri
 ≤ c+

�
i∈S∪U

vi 	diyi
Thus:

�
i∈S∪U

�
fi + vi 	di
 yi ≤ c+

�
i∈S∪U

�
vi	si + vi	ri + vi 	diyi − vi 	di
 (48)

If we denote u =
�
i∈S∪U

�
vi	si + vi	ri + vi 	diyi − vi 	di
, it results that:

�
i∈S∪U

�
fi + vi 	di
 yi ≤ c+ u (49)

The inequality (49) can thus be considered as a constraint of a 0-1 continuous knapsack
problem. So, we get the following properties.

Proposition 9. Given S a cover of SPMCLSSP, and U a subset of I \ S, the inequality (where
φS is defined by (44))

�
i∈S∪U

vi (	si + 	ri) ≥ λS +
�
i∈S

max
�
−fi, vi 	di − λS� (1− yi) +

�
i∈U

�
φS
�
fi + vi 	di

 yi +

�
i∈U

vi 	di (1− yi) (50)

is valid for SPMCLSSP.

Proof. Let ({j′} , U∪{j′} , S) be a cover pair for SPMCLSSP such that: fj+vj 	dj > λS. According
to the proposition 7, the following inequality is valid for SPMCLSSP

�
i∈S

min
�
λS , fi + vi 	di
 yi +

�
i∈U

φS
�
fi + vi 	di
 yi ≤

�
i∈S\{j}

min
�
λS , fi + vi 	di


+
�

i∈S∪U

�
vi	si + vi	ri + vi 	diyi − vi 	di
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Since fj + vj 	dj > λS, we have min(fj + vj 	dj , λS) = λS. By adding min(fj + vj 	dj , λS)− λS to
the right side of the previous inequality, we get:

�
i∈S

min
�
λS , fi + vi 	di
 yi +

�
i∈U

φS
�
fi + vi 	di
 yi ≤

�
i∈S

min
�
λS , fi + vi 	di
− λS

+
�

i∈S∪U

�
vi	si + vi	ri + vi 	diyi − vi 	di


which is valid for SPMCLSSP. We obtain the inequation (50) by simplification.

Proposition 10. Let S be a cover of SPMCLSSP. We consider an order [1], . . . , [|S|] such that

f[1] + v[1] 	d[1] ≥ · · · ≥ f[|S|] + v[|S|] 	d[|S|]. Let us set T = I \ S and (T ′, T ′′) any partition of T . We

define µ1 = f[1] + v[1] 	d[1] − λS .

If |S| ≥ 2 and f[2] + v[2] 	d[2] ≥ λS, the inequality

�
i∈S∪U

vi (	si + 	ri) ≥ λS +
�
i∈S

max
�
−fi, vi 	di − λS� (1− yi) +

�
i∈U

φS
�
fi + vi 	di
 yi

+
�
i∈U

vi 	di (1− yi) +
λS

f[2] + v[2] 	d[2]

�
i∈T ′

(vixi − (µ1 − fi) yi) (51)

is valid for SPMCLSSP.

Proof. The proof is similar to the proof of proposition 5.

6.3 Lifting reverse cover inequalities for the SPMCLSSP problem

In the same way, we can notice that the inequality (48) is a constraint of a 0-1 continuous knapsack
problem. The following propositions hold.

Proposition 11. Let S be a reverse cover for SPMCLSSP and U a subset of I\S. The inequality

�
i∈S∪U

vi (	si + 	ri) ≥�
i∈S

�
vi 	di − ψU �fi + vi 	di

 (1− yi) +

�
i∈U

vi 	di +
�
i∈U

(fi − µS) yi (52)

is valid for SPMCLSSP.

Proof. According to proposition 8, the inequality

�
i∈S

ψU
�
fi + vi 	di
 yi+�

i∈U

�
fi + vi 	di − µS
 yi ≤�

i∈S
ψU
�
fi + vi 	di
+ �

i∈S∪U
vi
�	si + 	ri + 	diyi − 	di


is valid for SPMCLSSP. We obtain the inequation (52) by simplification.

Proposition 12. Let S be a reverse cover of the SPMCLSSP problem and U ⊂ I \ S such that

fi + vi 	di ≥ µS ∀i ∈ U . We consider an order [1], . . . , [|U |] such that f[1] + v[1] 	d[1] ≥ · · · ≥
f[|U|] + v[|U|] 	d[|U|]. Let T = I \ {S ∪ U} and (T ′, T ′′) any partition of T. The inequality (ψU is
defined by (46)):

�
i∈S∪U

vi (	si + 	ri) ≥
�
i∈S

�
vi 	di − ψU �fi + vi 	di

 (1− yi) +

�
i∈U

(fi − µS) yi +
�
i∈U

vi 	di
+ min

i∈S

���ψU
�
fi + vi 	di


fi + vi 	di
����
i∈T ′

(vixi − (µS − fi) yi) (53)

is valid for SPMCLSSP.

Proof. The proof of this proposition is similar to one described for proposition 4.
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7 Separation heuristic for cover inequalities

In this section, we present a fast combinatorial separation heuristic to create cover inequalities for
the SPMCLSSP problem, which are also valid for the MCLSSP. Indeed, for the latter problem,
we generate the cover inequalities for each period of the planning horizon which corresponds to
the cover inequalities of the SPMCLSSP.

In order to build a cover inequality for the SPMCLSSP problem, the first step is to define
a cover set S, then we compute λS and µ1 (see (25) and proposition 5). The second step is to
examine all the elements i ∈ I \ S to create the sets U and T ′.

We use a greedy algorithm to create the set S. We sort the elements i ∈ I according to the
descending order of the value:

max
�
−fi, vi 	di − λS� (1− y∗i )− vi (	s∗i + 	r∗i ) (54)

The formula (54) is obtained from the inequality (51) by considering the only terms in relation
with S. The value of (54) represents the contribution of the violation of the inequality (51) by
the item i ∈ S and depends on λS. However, λS is not known in advance. Therefore, we estimate
the value of λS. To do that, we sort the items i ∈ I according to the descending order of their
resource consumption by using the formula (55). Formula (54) would give a better set S but
connot be used since λS is not known, so in practice formula (55) is used.

�
fi + vi 	di
 y∗i (55)

We can notice that the formula (55) represents the resource consumption of the item i if the

total requirement 	di is produced.
In order to create a cover set S, we greedily add the sorted elements according to the formula
(55) until we get a cover set. For the design of the set U (respectively T ′), we examine all the
elements i ∈ I \ S and check if the corresponding value of the expression obtained by summing
up the terms of the inequality (51) in relation with U (respectively to T ′) is positive. In this case,
we add the elements i to U (respectively to T ′). We derive a valid inequality using (51) with the
sets S, U and T ′ obtained. If the value of the inequality is positive, we get a cut.

The basic principle previously described is captured in the following algorithm.

Algorithm 2 Separation heuristic for cover inequalities

1: Order the elements of I in descending order according to the formula (55).
2: S ← ∅, U ← ∅, T ′ ← ∅, i′ ← 0

3: i′ ← arg mini=1,...,N

��i
k=1

�
f[k] + v[k] 	d[k]



> c
�

4: S ← {[1], . . . , [i′]}
5: i1 ← arg maxi∈S

�
fi + vi 	di�

6: i2 ← arg maxi∈S\{i1}
�
fi + vi 	di�

7: λS ←
��i′

k=1 f[k] + v[k] 	d[k]



− c

8: if (|S| ≥ 2) and (fi2 + vi2
	di2 ≥ λS) then

9: µ1 ←
�
fi1 + vi1

	di1�− λS
10: i← i′ + 1
11: while (i ≤ N) do

12: if (φS
�
f[i] + v[i] 	d[i]



y∗[i] + v[i] 	d[i]

�
1− y∗[i]

�− v[i] �	s∗[i] + 	r∗[i]� > 0) then

13: U ← U ∪ {[i]}
14: else if (v[i]x

∗
[i] >

�
µ1 − f[i]

�
y∗[i]) then

15: T ′ ← T ′ ∪ {[i]}
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16: end if
17: i← i+ 1
18: end while
19: end if
20: if (The inequality (51) based on S,U and T ′ is violated) then
21: Add the inequality (51) at the current node.
22: end if

We recall that the evaluation of the superadditive functions φS is in O(N) for each item. The
separation heuristic for generating the cover inequalities for the SPMCLSSP problem is obviously
in O(N2). Moreover, since each period is examined separately to create valid inequalities for the
MCLSSP problem, the separation heuristic is then in O(N2T ) for the latter problem.

8 Separation heuristic for reverse cover inequalities

The idea of the separation heuristic for reverse cover inequalities is similar to the previous one.
The first step is to create a reverse cover set S in order to define µS (see (40)). The second step
is to examine all the elements i ∈ I \ S to create the sets U and T ′. We use a greedy algorithm
to create S by sorting the elements i ∈ I according to the descending order of the value:

�
vi 	di − ψU �fi + vi 	di

 (1− y∗i )− vi (	s∗i + 	r∗i ) (56)

In the same way, the formula (56) is obtained from the inequality (53) by considering the only
terms in relation with S. The value of (56) represents the contribution of the violation of the
inequality (53) by the item i ∈ S and depends on µS. However, µS is not known in advance.
Therefore, we estimate the value of µS . To do that, we sort the items i ∈ I according to the
descending order of their resource consumption by using the formula (55). Formula (56) would
give a better set S but connot be used since λS is not known, so in practice formula (55) is used.
We illustrate this principle in the following algorithm:

Algorithm 3 Separation heuristic for reverse cover inequalities

1: Order the elements of I in descending order according to the formula (55)
2: S ← ∅, i′ ← 1
3: while (i′ ≤ N) do
4: S ← S ∪ {i′}
5: µS = c−�i′

j=1 f[j] + v[j] 	d[j]

6: if (µS < 0) then
7: T ′ ← ∅, U ← ∅, i← i′ + 1
8: while (i ≤ N) do

9: if (
�
f[i] − µS

�
y∗[i] + v[i] 	d[i] − v[i]

�	s∗[i] + 	r∗[i]� > 0) then
10: U ← U ∪ {[i]}
11: else if (v[i]x

∗
[i] −

�
µS − f[i]

�
y∗[i] > 0) then

12: T ′ ← T ′ ∪ {[i]}
13: end if
14: i← i+ 1
15: end while
16: if (The inequality (53) based on S,U and T ′ is violated) then
17: Add the inequality (53) at the current node.
18: i′ ← N + 1
19: else
20: i′ ← i′ + 1
21: end if
22: else
23: i′ ← N + 1
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24: end if
25: end while

We recall that the evaluation of the superadditive functions ψS is in O(N) for each item. The
separation heuristic for constructing reverse cover inequalities for the SPMCLSSP problem is
obviously in O(N2). Since each period is examined separately to create valid inequalities for the
MCLSSP problem, the separation heuristic is then in O(N2T ) for the MCLSSP.

9 Computational issues and results

In this section, we discuss computational issues that arise in using the classes of inequalities
previously identified. We report computational results from cut-and-branch and branch-and-cut
frameworks.

The cut-and-branch method consists in adding cuts only at the first node (or root) of the
branch-and-bound tree in order to improve the lower bound. The branch-and-cut method con-
sists in adding cuts not only at the first node but at other nodes of the branch-and-bound tree.
Usually, cuts are not added at all the nodes of the branch-and-bound tree in order not to slow
down the total CPU time while solving the problem.

Our algorithm is implemented in the C++ programming language and it is intergrated in an
APS software. It uses the callable CPLEX 9.0 library [20] that provides callback functions that
allow the user to implement his own branch-and-cut algorithm.

We have performed computational tests on a series of extended instances from the lot-sizing
library LOTSIZELIB [22], initially described in Trigeiro et al. [36] and also used by Miller [25].
Trigeiro et al. [36] instances are denoted trN−T , where N is the number of items and T is the
number of periods. These are characterized by a variable resource consumption equal to one,
and enough capacity to satisfy all the requirement over the planning horizon. They are also
characterized, by an important setup cost, a small fixed resource requirement (setup time) and
no σit which denotes the last period at which an item i produced at period t can be consumed.

The characteristics of Trigeiro et al. [36] problems are presented in table 1.

Instance N T
tr6−15 6 15
tr6−30 6 30
tr12−15 12 15
tr12−30 12 30
tr24−15 24 15
tr24−30 24 30

Table 1: Instances of Trigeiro et al. [36].

Since these instances have enough capacity to satisfy all the requirements over the planning
horizon, we make some modifications to induce shortages. We have derived 24 new benchmarks2

from the trN−T instances by augmenting the fixed resource requirements (setup times), the vari-
able resource requirements and by adding σit. We have also generated shortage costs. More
details are given below.
These new benchmarks fall into 4 classes of 6 instances each:

• The first class was obtained by increasing the variable resource requirements and adding
σit. Variable resource requirements are multipled by a coefficient (1 + ρ) such that 0 ≤
ρ ≤ 0.001 × ct, ct represents the available resource capacity at period t. σit are generated
such that we cannot anticipate production more than 1

3
T periods, T denotes the number of

periods.

2Test problems can be obtained from the corresponding author.
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• The second class is obtained by carring out the same modifications on the variable resource
requirements than the first class. σit are generated such that we cannot anticipate production
more than 2

3
T periods.

• The third class is based on the first one. In fact, we carried out some modifications on fixed
resource requirements which are increased by multiplying them by a coefficient (1 + τ ) such
that τ ≈ 0.1 × ct.

• The last class is obtained by carring out the same modifications on the variable and fixed
resource requirements than the third class. σit are generated such that we cannot anticipate
production more than 2

3
T periods.

Shortage costs are considered as penalty costs and their values must be higher than other
cost components. Therefore, ϕit are fixed such that ϕit >> maxi′,t′ {αi′t′ ;βi′t′ ; γi′t′}. Moreover,
shortage costs have the feature that they decrease over the horizon. In fact, demands in the first
periods of the horizon correspond to real orders and not forecasts by opposition to the demands
in the last periods that are usually only predictions. They are generated in the same way for all
the described instances.

We carried out a comparison between the following methods:

• An algorithm based on the standard branch-and-cut of CPLEX solver that we denote by
BC.

• An algorithm based on the standard branch-and-cut of CPLEX solver including all the cuts
presented in this paper denoted by BC+.

In both algorithms BC and BC+, we used the aggregated model defined in section 1 by the
set of constraints (1)-(7).

Two kinds of specialized cuts in mixed linear problems are used in both methods, the flow
cover cuts and the Mixed Integer Rounding (MIR) cuts from CPLEX 9.0 solver. The flow cover
cuts are accurate regarding the MCLSSP problem because of the flow structure induced by the
flow conservation constraints (2). For a complete description of these flow cover cuts, the reader
can refer to Gomory [16], Nemhauser and Wolsey [27] and Wolsey [40]. The MIR cuts were
primarily applied to both capacity and maximum production constraints. For more details on the
MIR cuts, we can refer to Padberg et al. [30] and Van Roy and Wolsey [34].

For all the algorithms, LB and UB represent respectively the lower bound and the upper
bound values at the termination of the algorithm. NBNodes is the number of the nodes explored
in the branch-and-bound tree, UCuts is the number of the cuts added during the branch-and-cut
algorithm (cover, reverse cover and (l, S) inequalities). FCuts andMIRCuts represents respectively
the number of flow cover and MIR cuts added by the solver during the branch-and-cut algorithm.
All the algorithm comparisons are based on the following criteria. The first one called GAP is
equal to |UB − LB| / |UB|, and the second one is a CPU time denoted T ime. The computations
are performed on a Pentium IV 2.66 Ghz PC.

At the root node of the BC+ method, we use algorithms 1, 2 and 3 (see sections 4, 7 and
8) until we do not find any more violated inequalities. The same procedure is followed in the
branch-and-bound tree.

The branching strategy in both algorithms is depth-first search to find a feasible solution.
Upper bounds are either obtained when LP solutions are integral or by the LP based heuristics
of the solver.

Generally, our computational results show that adding inequalities at the root node improves
considerably the lower bounds. The average improvement of the lower bound at the root node
of BC+ is 80% for the first class, 53% for the second class, 73% for the third class and 48% for
the last class. This rate is the percentage obtained between the best lower bound observed at the
first node of BC and the best one found at the end of the BC+ method.

Table 2 summarizes the computational behaviour based on a time-limit criterion. We allow a
maximum of 600 seconds CPU time for all the algorithms.

From table 2, we can easily notice that using the valid inequalities described in this paper
improves the performance of the branch-and-cut algorithm. Clearly BC+ solves the test problems
more effectively than BC. The valid inequalities that we have proposed are interesting since all
the lower bounds given by BC+ are better than those given by BC.
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N T Method UB LB NBNodes UCuts MIRCuts FCuts GAP

Class 1

6 15 BC 4 038 212 3 979 268 123 900 0 309 254 1,46%
6 15 BC+ 4 030 456 3 999 352 70 000 397 87 160 0,77%
6 30 BC 4 536 980 4 124 370 34 000 0 625 523 9,09%
6 30 BC+ 4 392 289 4 271 466 10 300 877 100 200 2,75%
12 15 BC 7 669 660 7 495 023 62 600 0 616 464 2,28%
12 15 BC+ 7 651 166 7 610 635 19 600 517 257 300 0,53%
12 30 BC 8 772 505 7 903 312 25 600 0 607 717 9,91%
12 30 BC+ 8 609 716 8 345 637 1 500 2 063 64 364 3,07%
24 15 BC 14 117 000 13 780 000 73 600 0 370 600 2,39%
24 15 BC+ 14 082 000 13 995 000 10 300 796 83 445 0,62%
24 30 BC 23 619 000 22 879 000 11 800 0 837 1 298 3,13%
24 30 BC+ 23 558 000 23 180 000 300 4 048 134 807 1,60%

Class 2

6 15 BC 4 032 790 3 978 178 120 900 0 304 253 1,35%
6 15 BC+ 4 034 967 3 987 919 47 400 248 157 2 001 1,17%
6 30 BC 4 530 576 4 120 298 34 700 0 637 499 9,06%
6 30 BC+ 4 520 148 4 269 236 6 800 667 217 274 5,55%
12 15 BC 7 664 197 7 477 993 57 600 0 546 532 2,43%
12 15 BC+ 7 666 557 7 528 738 14 500 439 201 393 1,80%
12 30 BC 8 793 271 7 899 450 22 800 0 630 693 10,16%
12 30 BC+ 8 675 000 8 250 948 1 900 1 506 240 456 4,89%
24 15 BC 14 118 000 13 776 000 69 600 0 315 669 2,43%
24 15 BC+ 14 112 000 13 850 000 6 800 731 133 619 1,86%
24 30 BC 23 634 000 22 875 000 13 200 0 742 1 335 3,21%
24 30 BC+ 23 647 000 23 002 000 300 2 798 388 1 120 2,73%

Class 3

6 15 BC 5 300 603 5 167 025 74 000 0 347 216 2,52%
6 15 BC+ 5 268 911 5 228 874 53 000 375 205 129 0,76%
6 30 BC 7 210 627 6 581 190 34 400 0 664 484 8,73%
6 30 BC+ 7 138 995 6 798 534 14 000 539 372 251 4,77%
12 15 BC 12 345 000 11 632 000 5 700 0 692 358 5,77%
12 15 BC+ 12 178 000 11 945 000 5 900 1 239 179 191 1,91%
12 30 BC 15 728 000 12 710 000 14 500 0 1 014 456 19,19%
12 30 BC+ 15 641 000 14 681 000 3 700 2 160 74 153 6,14%
24 15 BC 26 330 000 24 822 000 10 700 0 850 445 5,73%
24 15 BC+ 26 038 000 25 613 000 3 500 603 437 408 1,63%
24 30 BC 43 446 000 36 863 000 3 600 0 941 993 15,15%
24 30 BC+ 43 476 000 41 702 000 10 3 559 55 292 4,08%

Class 4

6 15 BC 5 295 547 5 170 187 79 200 0 324 230 2,37%
6 15 BC+ 5 312 724 5 204 658 48 710 25 386 190 160 2,03%
6 30 BC 7 202 452 6 581 498 32 800 0 674 462 8,62%
6 30 BC+ 7 059 530 6 736 455 11 600 14 323 414 277 4,58%
12 15 BC 12 256 000 11 222 000 21 400 0 775 304 8,43%
12 15 BC+ 12 348 667 11 724 138 6 221 8 332 269 255 5,06%
12 30 BC 15 697 000 12 520 000 18 000 0 932 492 20,24%
12 30 BC+ 15 388 918 14 102 211 2 293 9 234 463 420 8,36%
24 15 BC 26 463 000 23 996 000 14 500 0 798 466 9,32%
24 15 BC+ 26 452 668 25 207 181 3 180 6 268 427 380 4,71%
24 30 BC 43 364 000 35 593 000 4 600 0 959 926 17,92%
24 30 BC+ 42 319 192 38 745 933 160 3 313 460 604 8,44%

Table 2: Computational results: time-limit criterion.
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We also can notice that the upper bounds obtained by BC+ are better than those obtained by
BC. In fact, usually a good lower bound implies a better upper bound. One reason is that a better
lower bound can be used to prune dominated nodes of the research tree and allow the branch-and-
bound algorithm to visit more interesting branches to find better solutions. An additional reason
is that when the LP relaxation is tighter, it is easier to find integer solutions, either because the
LP solution is more often integral or because LP based heuristics of the solver are more successful.

Moreover, the number of nodes explored by the BC method is much more higher than the one
explored by BC+. The ratio between these two numbers varies from 150% to 500% for the small
instances and 300% to 36000% for the bigger instances. In fact, generating cuts takes time and
having many cuts slows down the LP resolution at each node. Thus, when we enable the cuts
that we have developed, the solver generates a number of cuts lower than the number obtained
when they are disabled. Since we generate cuts before the solver, the previous observation can be
explained by the fact that these cuts dominate part of standard cuts generated by the solver.

Another remark that we can make by visualizing table 2 is that the third and forth classes are
more difficult than the first and the second ones. Indeed, the third and forth class problems are
characterized by a higher fixed resource consumption values than the first and the second ones.

We can also notice that problems with a small σit have a higher GAP than the ones with
a big one. In fact, instances of class 1 and class 3 have reach a smaller GAP than respectively
instances from class 2 and class 4 when using both algorithms BC and BC+.

Table 3 shows the percentages of generated cuts by BC+ for all instances. %lScuts, %Ccuts
and %RCcuts are respectively the percentage of (l, S), cover and reverse cover cuts generated by
BC+. We use a time-limit criterion of 600 seconds for BC+.

N T %lScuts %Ccuts %RCcuts N T %lScuts %Ccuts %RCcuts

Class 1 Class 3
12 15 4,08% 95,84% 0,08% 12 15 21,48% 77,20% 1,32%
12 30 14,62% 85,32% 0,05% 12 30 33,93% 64,89% 1,17%
24 15 13,16% 86,80% 0,04% 24 15 51,19% 34,24% 14,57%
24 30 43,96% 55,93% 0,11% 24 30 71,64% 21,44% 6,92%
6 15 18,78% 81,16% 0,06% 6 15 71,00% 27,43% 1,56%
6 30 71,16% 28,80% 0,04% 6 30 87,49% 10,18% 2,34%
Class 2 Class 4
12 15 2,58% 97,35% 0,06% 12 15 9,30% 90,18% 0,52%
12 30 6,60% 93,30% 0,11% 12 30 15,69% 83,11% 1,20%
24 15 22,97% 77,03% 0,00% 24 15 45,11% 45,11% 9,78%
24 30 27,31% 72,68% 0,01% 24 30 59,13% 38,36% 2,51%
6 15 31,41% 68,56% 0,04% 6 15 69,78% 27,98% 2,23%
6 30 60,46% 39,49% 0,05% 6 30 80,05% 17,05% 2,90%

Table 3: Computational results: cuts percentages.

From table 3, we can notice that the percentage of reverse cover cuts generated by BC+ is
very small. We can also notice that BC+ generates more (l, S) cuts than cover cuts for class 1
and class 2 benchmarks except for instances with 24 items and 30 periods. For class 3 and class
4 instances, BC+ generates more cover cuts than (l, S) cuts except for instances with 6 items.

We have also tested BC+ using each family of valid inequalities separately ((l, S), cover and
reverse cover inequalities). Table 4 summarizes the computational results on class 1 and class 3
of instances. GAPlS , GAPC and GAPRC represents respectively the GAP when only the family
of (l, S) inequalities is used, the GAP when only the family of cover inequalities is used and the
GAP when only the family of reverse cover inequalities is used.

These tests show that the family of (l, S) inequalities is the most effective. The family of cover
inequalities is less effective than the family of (l, S) inequalities. Using the family of reverse cover
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N T GAPlS GAPC GAPCR

Class 1
12 15 0,56% 2,45% 2,40%
12 30 4,93% 11,03% 10,02%
24 15 0,55% 2,50% 2,54%
24 30 1,87% 3,37% 3,24%
6 15 0,68% 1,40% 1,39%
6 30 5,33% 9,44% 9,10%
Class 3
12 15 1,48% 3,16% 4,45%
12 30 11,17% 14,71% 19,40%
24 15 2,43% 4,28% 5,32%
24 30 10,65% 12,40% 14,63%
6 15 1,19% 2,20% 2,60%
6 30 4,88% 7,27% 7,71%

Table 4: Computational results by cuts family.

inequalities alone is not really effective.

To give a relevant comparison concerning the number of added cuts and explored nodes for both
algorithms BC and BC+, we solve some problems to a given GAP . Since we cannot solve these
problems to optimality in a reasonable CPU time, we use a time-limit criterion of 1800 seconds
for BC. We use the GAP obtained at the end of BC as a stopping criterion for BC+. We also
use a time-limit of 1800 seconds for BC+. Table 5 summarizes the computational behaviour of
the instances of class 1 based on a minimum GAP criterion.

N T Method NBNodes UCuts MIRCuts FCuts GAP T ime

Class 1
6 15 BC 420 821 0 309 254 1,03% 1800
6 15 BC+ 9 810 517 14 183 0,94% 53
6 30 BC 105 911 0 625 523 8,51% 1800
6 30 BC+ 110 1924 64 364 7,65% 13
12 15 BC 174 601 0 617 464 2,18% 1800
12 15 BC+ 40 783 33 377 2,05% 2
12 30 BC 75 836 0 747 808 9,60% 1800
12 30 BC+ 0 4048 134 807 8,66% 35
24 15 BC 206 400 0 433 638 2,14% 1800
24 15 BC+ 0 326 88 158 0,88% 4
24 30 BC 42 796 0 880 1 417 3,00% 1800
24 30 BC+ 10 848 81 184 2,00% 175

Table 5: Computational results: minimum GAP criterion.

From table 5, we can easily notice that to reach the same GAP , BC+ does not need a signifi-
cant number of nodes and time comparing to BC. We remark that without branching, BC+ gets
a lower GAP than BC’s one for the instances with 12 items and 30 periods and the one with 30
items and 24 periods. The cuts improve considerably the GAP at the root node.

Many authors reported experimental results showing that using the facility location-based
formulation provide a better LP relaxation based lower bound than the one obtained by the
aggregated formulation. (see [8], [31]). We carried out some computational experiments using the
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facility location-based formulation introduced initially by Krarup and Bilde [18]. Production and
stock variables are redefined by considering the period where the production is really consumed.
These are reformulated using respectively formula (10) and (11) (see page 4).

We denote BCFL the branch-and-cut method using this formulation. Some preliminary results
that corroborate the previsous observation are presented in table 6. We allow a maximum of 600
seconds CPU time for BCFL.

N T Method UB LB NBNodes MIRCuts FCuts GAP

Class 1
6 15 BCFL 4 020 032 4 001 075 46 464 587 52 0,47%
6 30 BCFL 4 378 291 4 279 466 5 623 1 068 70 2,26%
12 15 BCFL 7 621 017 7 601 358 8 284 1 159 39 0,26%
12 30 BCFL 8 528 870 8 335 720 8 040 556 44 2,26%
24 15 BCFL 14 018 025 13 990 899 23 546 258 93 0,19%
24 30 BCFL 23 344 574 23 250 108 7 200 168 80 0,40%
Class 2
6 15 BCFL 4 018 532 3 998 656 41 355 566 63 0,49%
6 30 BCFL 4 420 710 4 275 341 6 608 1 059 72 3,29%
12 15 BCFL 7 625 360 7 599 363 10 362 1 127 69 0,34%
12 30 BCFL 8 537 235 8 333 043 9 389 491 45 2,39%
24 15 BCFL 14 021 790 13 990 517 24 885 183 118 0,22%
24 30 BCFL 23 333 497 23 249 672 5 835 109 81 0,36%
Class 3
6 15 BCFL 5 248 183 5 219 329 17 920 531 63 0,55%
6 30 BCFL 7 033 213 6 750 190 3 161 872 186 4,02%
12 15 BCFL 12 069 670 11 898 545 2 005 891 79 1,42%
12 30 BCFL 15 210 791 14 603 870 473 1 346 150 3,99%
24 15 BCFL 25 915 803 25 601 287 1 567 687 192 1,22%
24 30 BCFL 43 265 295 41 630 487 190 1 160 334 3,78%
Class 4
6 15 BCFL 5 247 783 5 216 921 16 996 189 64 0,59%
6 30 BCFL 6 991 352 6 742 206 3 601 804 228 3,56%
12 15 BCFL 12 113 948 11 840 693 2 000 853 69 2,26%
12 30 BCFL 15 477 755 14 196 428 290 1 222 97 8,28%
24 15 BCFL 25 660 092 25 266 656 1 829 535 125 1,53%
24 30 BCFL 41 504 711 39 151 154 130 566 173 5,67%

Table 6: Computational results using the facility location-based formulation.

From table 6, we can easily notice that using the facility location-based formulation improves
the performance of the BC method. Clearly BCFL outperforms BC.

We also can notice that upper bounds obtained by BCFL are better than those obtained by
BC and BC+. Lower bounds of BC and BCFL are almost equivalent.

We can also notice that the number of flow cover cuts generated by BCFL is lower than the
ones generated by BC and BC+, but the number of MIR cuts is greater for BCFL than BC and
BC+. This observation can be explained by the fact that we loose the flow structure induced by
the flow conservation constraints in BCFL when we use the facility location-based formulation.

Moreover, the number of nodes explored by the BC method is much more higher than the one
explored by BCFL. In fact, facility location-based formulation needs more variables and more
constraints than the aggregated model. This new formulation may slows down the LP resolution
at each node. Computational results show that to solve the LP relaxation of the facility location-
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based formulation, we need an average of twice more CPU time than the LP relaxation of the
aggregated formulation.

According to table 6, we can say that BCFL is a promising method that can help us improving
the branch-and-cut algorithm to solve production planning problems. Namely, it will be really
interesting to generalize valid inequalities presented in this paper to the facility location-based
formulation of MCLSSP problem and use them in a branch-and-cut framework.

10 Conclusion

We proposed a mathematical formulation of a new capacitated lot-sizing problem with setup times
and shortage costs. A polyhedral approach has yielded strong valid inequalities. Computational
experiments suggests that the use of these inequalities significantly improves the algorithms used
to solve this kind of problems. There are many enhancement means to follow up these results.
Namely, we study the polyhedral structure of the convex hull of the proposed model which helps
us to prove that the cover inequalities induce facets of the convex hull under certain conditions [2].
By following the same approach, it could be useful to prove that reverse cover inequalities are also
facet defining under certain conditions. The valid inequalities presented in this document were
generalized to take into account other practical constraints that occur frequently in industrial
situations, notably minimal production level and minimum run constraints. These inequalities
were also generalized when more than one resource is available. Some extensions could be done
when we have to deal with setup constraints on groups of items. From a scheduling perspective,
these valid inequalities can be generalized to include start-up costs. We can quote Van Hoesel
et al. [37]. They generalized the (l, S) inequalities to a new class of valid inequalities (l, R, S)
to deal with start-up costs for the uncapacitated lot-sizing problem. It should be interesting to
pursue this work to generalize the valid inequalities presented in this paper. The extension of the
valid inequalities for the facility location-based formulation is also a promising track to enhance
the effectiveness of the approach. Finally, it would be also interesting to use this approach in
conjunction with a heuristic as the time decomposition based heuristic presented in [1].
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