Refined Asymptotics for the subcritical Keller-Segel system and Related Functional Inequalities - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2010

Refined Asymptotics for the subcritical Keller-Segel system and Related Functional Inequalities

Résumé

We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the one-dimensional equation is a contraction with respect to Fourier distance in the subcritical case.
Fichier principal
Vignette du fichier
Refined1-2D-LogCase-HAL.pdf (230.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00503203 , version 1 (16-07-2010)

Identifiants

Citer

Vincent Calvez, José Antonio Carrillo. Refined Asymptotics for the subcritical Keller-Segel system and Related Functional Inequalities. 2010. ⟨hal-00503203⟩
150 Consultations
183 Téléchargements

Altmetric

Partager

More