Alleviating the one-to-many mapping problem in voice conversion with context-dependent modelling - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Alleviating the one-to-many mapping problem in voice conversion with context-dependent modelling

Résumé

This paper addresses the "one-to-many" mapping problem in Voice Conversion (VC) by exploring source-to-target mappings in GMM-based spectral transformation. Specifically, we examine differences using source-only versus joint source/target information in the classification stage of transformation, effectively illustrating a "one-to-many effect" in the traditional acoustically-based GMM. We propose combating this effect by using phonetic information in the GMM learning and classification. We then show the success of our proposed context-dependent modeling with transformation results using an objective error criterion. Finally, we discuss implications of our work in adapting current approaches to VC.
Fichier principal
Vignette du fichier
InterSpeech09.pdf (62.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00498445 , version 1 (07-07-2010)

Identifiants

  • HAL Id : hal-00498445 , version 1

Citer

Elizabeth Godoy, Olivier Rosec, Thierry Chonavel. Alleviating the one-to-many mapping problem in voice conversion with context-dependent modelling. InterSpeech 09 : 10th Annual Conference of the International Speech Communication Association, Sep 2009, Brighton, United Kingdom. ⟨hal-00498445⟩
286 Consultations
1059 Téléchargements

Partager

More