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Abstract 
This paper addresses the "one-to-many" mapping problem in 
Voice Conversion (VC) by exploring source-to-target 
mappings in GMM-based spectral transformation. 
Specifically, we examine differences using source-only versus 
joint source/target information in the classification stage of 
transformation, effectively illustrating a "one-to-many effect" 
in the traditional acoustically-based GMM. We propose 
combating this effect by using phonetic information in the 
GMM learning and classification. We then show the success 
of our proposed context-dependent modeling with 
transformation results using an objective error criterion. 
Finally, we discuss implications of our work in adapting 
current approaches to VC. 
Index Terms: Voice conversion, GMM, Spectral mapping. 

1. Introduction 
Voice Conversion (VC) is the process of modifying the speech 
of a (source) speaker so that it sounds as if a different (target) 
speaker uttered the same phrase. VC finds applications in 
many systems involving speech, from messaging and 
translation systems to film dubbing. One particularly relevant 
application is for text-to-speech (TTS) systems in which VC 
can be used to create different voices without need for 
recording an entirely new database. While VC is pertinent to 
many applications, the subject is also highly complex and 
there remains much work to be done in improving the quality 
of current VC technologies. 

The classic approach to VC involves extraction and 
modification of acoustic parameters in speech, mainly spectral 
envelope and pitch, which have been shown to be among the 
most relevant parameters for speaker identification [1],[2]. 
Following this methodology, the first step in VC is to align 
speech frames from two speakers, in time, so that they 
correspond to roughly the same events. The next step is to 
describe and learn a mapping between source and target 
spaces. After this learning, the first step in transformation is 
classification (decoding) of the source frames according to the 
learned source space. Finally, a transformation function is 
applied directly on acoustic parameters of the source speech in 
order to estimate the target speech. There are many different 
methods used to describe the source and target spaces and 
their corresponding mapping, including Vector Quantization 
(VQ) [3], Neural Networks (NN) [4], and Gaussian Mixture 
Models (GMMs) [1],[5]. GMMs are the most employed in VC 
as they have been shown to outperform the other methods [6]. 
Following the general approach to VC above, our work 
focuses on spectral transformation using a GMM.   

It is important to note that the VC methods described 
above depend heavily on time-alignment of the source and 
target speech frames. Using parallel speech corpora (e.g. 
identical spoken texts), time alignment can be constrained to 

ensure the same phonetic contexts for each joint frame. 
However, even this phonetically-constrained time alignment 
does not ensure an acoustic alignment. That is, acoustically 
dissimilar events, mainly frames corresponding to different 
vocal tract configurations for each speaker, could be aligned 
(e.g. one speaker could have markedly different ways of saying 
'A,' though these instances will always be aligned to a singular 
'A' from the other speaker). After joint source/target frames are 
determined, grouping of these frames in the learning stage is 
acoustically-based. Accordingly, the lack of acoustic 
alignment between the source and target parameters in the 
joint frame gives rise to the widely recognized "one-to-many" 
problem [7]. More explicitly, the one-to-many problem occurs 
when a single group of source frames with similar spectral 
characteristics is associated with target frames in multiple 
groups representing different acoustic instances. In this case, it 
is impossible for the distinct target events to be uncovered 
from only the source information.  

Previous work has examined this problem in the context of 
VQ-based conversion, using hard-classification and clustering 
source frames independently from target frames [7], unlike our 
work, which considers mixtures of components and learning 
with joint source/target frames in a GMM-context. Moreover, 
to our knowledge, no solution to combat the one-to-many 
problem has been proposed.   

In this paper, we propose taking into account contextual 
information (namely phonetic context) in GMM-based VC in 
order to alleviate the one-to-many mapping problem. We 
further show that this strategy greatly improves the 
transformation results from a traditional acoustically-based 
GMM. The structure of this paper is as follows. Section 2 
presents the framework for GMM-based spectral conversion. 
In section 3, we exploit the difference between classification 
with source versus joint frames in order to illustrate the one-
to-many mapping problem. In section 4, we introduce phonetic 
information into the GMM framework in order to improve 
classification of speech frames, thus helping to alleviate the 
one-to-many mapping problem. Finally, sections 5 and 6 
conclude our discussion and mention avenues for future work.  

2. GMM-Based VC 
The following section briefly summarizes spectral conversion 
using a GMM, as presented in [1]. We will later refer to this 
model as an "Acoustic GMM." Let { }NxxX ,...,1= and 

{ }NyyY ,...,1=  be sets of spectral feature vectors for N time-

aligned frames from the source and target speech, respectively, 
and let ( )YXZ ,=  be the set of joint source/target spectral 
vectors. A GMM represents the probability distribution of 
these vectors as a mixture of Q multivariate Gaussians,  
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where ),;( qqzN Σµ  is a normal distribution with mean qµ  

and covariance qΣ  and qα  is the prior probability of the 

component q. Each component represents an acoustic class, 
hence, the GMM describes an acoustic space for the source 
and target speakers. The parameter set {qα , qµ , qΣ , q=1…Q} 

is calculated from an expectation maximization (EM) 
algorithm on the set of joint source/target spectral vectors Z. 
Given the learned GMM parameters, the transformation 
function is the maximum likelihood (ML) estimator of the 
target vector, given the corresponding source vector. 
Specifically, this function takes the form of a weighted 
mixture of the ML estimator for each component 
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where )( i
x
q xw  is the a posteriori probability that the frame ix  

belongs to the acoustic class described by the component q:   
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We refer to calculation of these a posteriori mixture weights as 
the classification step in transformation. 

3. Illustrating the One-to-Many Problem 

3.1. Source vs. Joint Classification  

The benefits of learning the GMM parameter set with a joint 
distribution (versus separate source and target models) are 
explored in [1]. However, the difference between using source 
versus joint data in transformation (specifically classification) 
has yet to be examined. Though it is not feasible in practice to 
have target data available in the classification step, exploring 
the difference between classification with source versus joint 
data provides insight into the types of source-to-target 
mappings present in spectral conversion. Accordingly, in 
addition to the mixture weights in (3), we will examine 
conversion results using the following joint mixture weights: 
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The corresponding joint transformation function is the same as 
in (2) with only the mixture weights changing. 

We will now examine conversion results using 
classification with source and joint data. Our speech data is 
taken from two parallel corpora of French speakers, namely a 
female (source) and male (target), used in France Telecom's 
TTS system, Baratinoo. Both acoustic databases are sampled 
at 16kHz and segmented (with manual verification) into 
phones and diphones. We consider only voiced phonemes (28 
in total, excluding 'P','T','K','S','CH','F') in transformation, as 
these phonemes carry most of the information related to 
speaker identity [2]. We take the middle frame of each phone 
along with its two adjacent frames, comprising the "stable" 
part of the phone. Such a choice has two advantages: first, the 
stable part of a phone is less influenced by adjacent phones, so 
it better represents an isolated acoustic event; second, this 
choice avoids need for a time-alignment algorithm as 

association between source and target frames is based on the 
corpus segmentation.  We discuss transformation for all phone 
frames later in section 4.3. In total, we have approximately 
82,000 feature vectors of which half are used for learning and 
half for testing. We calculate the discrete cepstrum coefficients 
(order 16) for each frame using the Harmonic plus Noise 
Model (HNM) as presented in [5] with a 10ms step and a 
maximum voicing frequency fixed to half the sampling 
frequency. We examine an objective error metric, namely the 
average MSE between the transformed and target frames, 
normalized by the average MSE between the source and target 
frames 

      

∑

∑

=

=

−

−

=
N

i

ii

N

i

iii

yx

yxy

MSE

1

2

1

2
)(ˆ

,   (5) 

where )(ˆ ii xy  can be calculated with either the source or joint 

mixture weights, as specified. We discuss subjective analyses 
of the conversion results later in section 5. Here, we focus first 
on objective measures to evaluate different conversion 
methods.   
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Figure 1: MSE with Source ('X') and Joint ('XY') 
Decoding wrt the number of GMM components Q. 

Figure 1 plots the transformation error using source and 
joint mixture weights as a function of the number of GMM 
components Q. The two curves show that there is a significant 
difference in performance between using source and joint 
mixture weights, indicating the presence of one-to-many 
mappings. More explicitly, it is clear that the source-to-target 
mappings are not strictly one-to-one, as in the case of a one-to-
one mapping, there is no difference between classification 
with source or joint data. In calculation of both curves, the 
model parameters remain unchanged; only the mixture weights 
differ. Consequently, in order to understand the difference in 
performance between classification with source and joint data, 
we must examine the mixture weights.  

Figure 2 shows histograms of the maximum mixture 
weight and the corresponding MSE for joint and source 
classification, respectively, for the representative example Q = 
16. In Figure 2a, nearly 80% of the total frames have a 
maximum mixture weight greater than 0.9, showing that joint 
classification mostly clearly favors one GMM component. On 
the other hand, in Figure 2b, only about 30% of the source-
classified frames have a maximum mixture weight greater than 
0.9, indicating that source classification distributes mixture 



weight more evenly over multiple components, creating 
"heavier" mixtures. In both Figures 2c and 2d, we see that the 
lower (higher) the maximum mixture weight, the higher 
(lower) the MSE. These observations on source and joint 
classification describe a "one-to-many effect" that explains the 
difference in performance seen in Figure 1.      
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Figure 2: Histograms of maximum mixture weight for 
joint (a) & source (b) classification with the 
corresponding MSE in (c) & (d), respectively. 

3.2. Isolating One-to-Many Mappings 

We can now use the above observations to isolate frames in 
one-to-many mappings, according to a criterion on the source 

)(xw  and joint )(zw  mixture weights outlined below 

  One-to-One:    γ≥)(max i
x xw  & γ≥)(max i

z zw ; 

One-to-Many:    γ<)(max i
x xw  & γ≥)(max i

z zw , (6) 

 
where γ  is a threshold on the maximum mixture weight 

values, )(maxmax q
q

ww = . Upon examination of a range of 

threshold values, we select γ  = 0.8 as a representative case 
for this work. Results obtained from applying this mapping 
criterion to the test data set with Q=16 are summarized in 
Table 1. We see that a significant majority (more than 80%) of 
frames is in either a one-to-one or one-to-many mapping. The 
remaining frames include outliers in the data and frames in 
many-to-many mappings. For frames in a one-to-one mapping, 
there is virtually no difference in MSE between decoding with 
source or joint data. On the other hand, for frames in a one-to-
many mapping (or numerous one-to-many mappings), there is 
a significant difference in MSE, of greater than 1.5dB, 
between decoding with source and joint frames. Thus, these 
results confirm that one-to-many mappings occur frequently 
and present a significant source of error in the classic GMM-
based approach to VC. 

Table 1. MSE (dB) by mapping type, Acoustic GMM. 

GMM 
(Acoustic) 

One-to-One 
(O) 

One-to-Many 
(M) 

Remaining 
(R) 

% frames 47 36 17 
X decoding -5.99 -4.24 -2.97 
XY decoding -6.06 -5.75 -5.22 

4. Context-Dependent Modeling 
In section 3, we showed that one-to-many mappings are 
indistinguishable in classic GMM-based conversion, yielding 
"heavy" mixtures that result in high conversion error. In order 
to combat this problem, we propose using context-dependent 
parameter constraints on the GMM to improve classification 
by eliminating erroneous mixtures. 

4.1. GMM with Phonetic Information 

In particular, we introduce phonetic information into the 
GMM framework. Specifically, we group frames by phoneme 
and attribute one GMM component to each group, giving 28 
in total. In learning a "Phonetic GMM", instead of an EM 
algorithm, Gaussian classes are generated according the 
phonetic label for each frame. The parameters for each 
Gaussian component are estimated as follows: 

∑∑
==

=−−=Σ=
kk N

l

k
k

T
llll

k
k

N

l

l
k

k N

N
zz

N
z

N
11

,))((
1

,
1 αµµµ , (7) 

where calculations are performed using the kN  feature 

vectors in the learning data set for a particular phoneme k. In 
transformation, we can then classify frames based on their 
phoneme label, avoiding mixture weight calculation. In what 
we refer to as transformation with phoneme separation, the 
transformation function takes the same form as in (2), but with 

qw  set to one for the component corresponding to the 

phoneme label of the frame. Given the model parameters of 
the Phonetic GMM, mixture weights can also be calculated for 
the source and joint feature vectors as in (3) and (4), 
respectively.  

4.2.  Conversion Results on Stable Parts 

Table 2 summarizes the conversion results for the Acoustic 
(A) and Phonetic (P) GMMs, with each model containing 28 
Gaussian components. We see that classification with 
phoneme separation for a Phonetic GMM greatly outperforms 
the classic acoustic GMM with source decoding, yielding an 
improvement of about 0.9dB. We also see that the Acoustic 
GMM performs the best with joint decoding, even though this 
result is not achievable in practice. Thus, with the Phonetic 
GMM, we make a slight sacrifice in the optimal (but not 
realizable) performance using joint acoustic decoding, in order 
to achieve significant gains using classification with phoneme 
separation afforded by this model. 

 
Table 2. Conversion Results for Phonetic & Acoustic GMM.  

 
GMM (Q=28) MSE (dB) Mean( maxw ) 

P,Phoneme Separation -5.58 -- 

P, X Decoding -4.71 0.72 
A, X Decoding -4.71  0.71 
P, XY Decoding -5.84 0.92 
A, XY Decoding -6.18 0.92 

 
Moreover, we find that the Phonetic and Acoustic GMMs 

behave nearly identically with source decoding, both in MSE 
and in mixture weight distribution. These similarities suggest 
that the problem of one-to-many mappings exists in both 
models, without considering phoneme separation in 
classification. Accordingly, we now re-visit the problem of 
one-to-many mappings within the context of a Phonetic 
GMM.  



Table 3 shows the conversion results for the Phonetic 
GMM with a breakdown of the MSE for one-to-one and one-
to-many frames according to the criterion in (6). We see that 
the one-to-many effect, as discussed in section 3, is present in 
the Phonetic GMM with acoustic decoding. Moreover, 
classification with phoneme separation improves the MSE by 
more than 1.2dB for frames in one-to-many mappings, while 
the results for frames in one-to-one mappings remain virtually 
unchanged. Thus, learning and classification based on 
phoneme label is able to reduce the errors resulting from one-
to-many mappings.  

 
Table 3. MSE (dB) by mapping type, Phonetic GMM.  

 
GMM (Phonetic) O M R 

% frames 35 44 21 
Phoneme Separation -5.68 -5.74 -5.07 
X decoding -5.66 -4.52 -3.85 
XY decoding -5.73 -5.99 -5.72 

 

4.3. Results for All Phone Frames 

While the core of our analysis lies in examining behavior of 
stable parts of phones, we also examined transformation on 
entire phones including both stable and transition frames. In-
between the marked phone boundaries and centers, we align 
source and target frames proportionally in time.  Table 4 
summarizes the transformation results of the different 
approaches shown in Table 2 for learning and decoding with 
both stable and transition frames. Comparing the results in 
Tables 2 and 4, we see that all methods suffer in performance 
with the inclusion of transition frames. Moreover, the general 
decrease in average maximum mixture weight indicates that 
there are more heavy mixtures in the source and joint 
decoding, yielding higher error overall. Note that the phoneme 
classification is less effective on the transition frames, though 
still outperforms the classic acoustic GMM-based method with 
source classification. These results indicate that there is 
interest in treating stable parts and transitions of phones 
separately. For example, conversion can be carried out on 
stable parts and an interpolation method can be used on 
transitions. 

Table 4. Conversion Results for Phonetic & Acoustic 
GMM, Stable & Transition Frames. 

GMM (Q=28) MSE (dB) Mean( maxw ) 

P,Phoneme Separation -4.87 -- 
P, X Decode -4.40 0.62 
A, X Decode -4.43 0.67 
P, XY Decode -5.48 0.84 
A, XY Decode -5.80 0.89 

 

5. Discussion & Future Work  
Our work follows the common VC method modifying acoustic 
parameters of source speech in order to estimate target speech. 
The advantage in this type of approach to VC is that it allows 
for the estimated speech to keep fine structures in the original 
signal that are not necessarily captured in the conversion 
model. A perceptual evaluation of converted speech quality 
modifying the spectral envelope and pitch of source speech is 
carried out in [9]. It is noted that, while the synthesis model in 

this case can achieve a reasonable speech quality (using 
original target parameters, for example), the models for 
parameter conversion need improvement. In informal listening 
tests, we confirmed these observations and further found that, 
due to the degraded quality of the speech synthesized with 
converted parameters, it was difficult to make a clear 
distinction between the different decoding strategies presented 
in this paper. 

The problems in learning and converting speaker-
dependent parameters occur because time-alignment of 
individual source and target speech frames does not 
necessarily ensure alignment on an acoustic level. In future 
work, we will seek to use alternative methods to align speaker 
feature vectors. In particular, the results in this paper suggest 
that there is value in incorporating more context-dependent 
information in learning and conversion. Accordingly, our goal 
will be to use both temporal and contextual information to 
generate aligned speaker spaces with classes that are more 
acoustically homogeneous. This type of model generation 
relying on context-dependent information more closely 
follows methods for VC using adaptation of detailed speaker 
models [9]. We, however, will maintain an approach to VC 
using transformation directly on acoustic parameters of 
original source speech in order to achieve high quality speech 
synthesis.  

6. Conclusion 
We have shown in the context of GMM-based spectral 
conversion that one-to-many mappings exist and present a 
significant source of error in voice conversion. Furthermore, 
using context-dependent phonetic information in learning and 
classification for the transformation model alleviates the 
problem presented by one-to-many mappings, thus greatly 
improving the conversion results.  
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