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Abstract

This paper addresses the "one-to-many" mappinglgroin
Voice Conversion (VC) by exploring source-to-target
mappings in GMM-based spectral transformation.
Specifically, we examine differences using sourcbreersus
joint source/target information in the classificati stage of
transformation, effectively illustrating a "one-teany effect”

in the traditional acoustically-based GMM. We prspo
combating this effect by using phonetic information the
GMM learning and classification. We then show thecess
of our proposed context-dependent modeling with
transformation results using an objective errortecion.
Finally, we discuss implications of our work in atiag
current approaches to VC.

Index Terms: Voice conversion, GMM, Spectral mapping.

1. Introduction

Voice Conversion (VC) is the process of modifying speech
of a (source) speaker so that it sounds as iffardiit (target)
speaker uttered the same phrase. VC finds applisatio
many systems involving speech, from messaging and
translation systems to film dubbing. One partidylaelevant
application is for text-to-speech (TTS) systemawimch VC
can be used to create different voices without némsd
recording an entirely new database. While VC isipent to
many applications, the subject is also highly campand
there remains much work to be done in improvingdbality
of current VC technologies.

The classic approach to VC involves extraction and
modification of acoustic parameters in speech, Ipapectral
envelope and pitch, which have been shown to bengrttee
most relevant parameters for speaker identificafibj[2].
Following this methodology, the first step in VCti align
speech frames from two speakers, in time, so thay t
correspond to roughly the same events. The negt ist¢o
describe and learn a mapping between source amgttar
spaces. After this learning, the first step in $farmation is
classification (decoding) of the source frames gtiog to the
learned source space. Finally, a transformatiorction is
applied directly on acoustic parameters of the sgpeech in
order to estimate the target speech. There are whiffieyent
methods used to describe the source and targeesaal
their corresponding mapping, including Vector Qimation
(VQ) [3], Neural Networks (NN) [4], and Gaussian Xtlire
Models (GMMs) [1],[5]. GMMs are the most employed\iC
as they have been shown to outperform the othenodst[6].
Following the general approach to VC above, our work
focuses on spectral transformation using a GMM.

It is important to note that the VC methods desctibe
above depend heavily on time-alignment of the sowand
target speech frames. Using parallel speech corgem
identical spoken texts), time alignment can be tairsed to
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ensure the same phonetic contexts for each joimtndr
However, even this phonetically-constrained timigrathent
does not ensure an acoustic alignment. That isyustically
dissimilar events, mainly frames corresponding iffeknt
vocal tract configurations for each speaker, cdddaligned
(e.g. one speaker could have markedly differentsvedysaying
‘A,' though these instances will always be aligteed singular
‘A" from the other speaker). After joint sourcegietrframes are
determined, grouping of these frames in the learistage is
acoustically-based. Accordingly, the lack of acaust
alignment between the source and target parametetise
joint frame gives rise to the widely recognized éen-many"
problem [7]. More explicitly, the one-to-many preli occurs
when a single group of source frames with similpecsral
characteristics is associated with target frameamintiple
groups representing different acoustic instancethis case, it
is impossible for the distinct target events to ureovered
from only the source information.

Previous work has examined this problem in the exdraf
VQ-based conversion, using hard-classification elndtering
source frames independently from target framesufljke our
work, which considers mixtures of components aratnieg
with joint source/target frames in a GMM-contextoidover,
to our knowledge, no solution to combat the oneatmy
problem has been proposed.

In this paper, we propose taking into account cdngg
information (namely phonetic context) in GMM-bas¢@ in
order to alleviate the one-to-many mapping probléie
further show that this strategy greatly improvese th
transformation results from a traditional acousiyebased
GMM. The structure of this paper is as follows. t®et 2
presents the framework for GMM-based spectral cmiwe.
In section 3, we exploit the difference betweerssifécation
with source versus joint frames in order to illagtrthe one-
to-many mapping problem. In section 4, we introdpleenetic
information into the GMM framework in order to ingue
classification of speech frames, thus helping tevalte the
one-to-many mapping problem. Finally, sections % d&h
conclude our discussion and mention avenues fardutork.

2. GMM-Based VC

The following section briefly summarizes spectraheersion
using a GMM, as presented in [1]. We will latererefo this
model as an "Acoustic GMM." LetX :{xl,...,xN}and
Y :{yl,...,yN} be sets of spectral feature vectors Nbtime-
aligned frames from the source and target speesbectively,
and let Z :(X,Y) be the set of joint source/target spectral

vectors. A GMM represents the probability distribat of
these vectors as a mixture@fmultivariate Gaussians,
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where N(z 14,24 ) is a normal distribution with meapy,
and covariancexy and ay is the prior probability of the

componentg. Each component represents an acoustic class,
hence, the GMM describes an acoustic space fosatlece
and target speakers. The parameter sgt, {4y, 24, =1...Q}

is calculated from an expectation maximization (EM)
algorithm on the set of joint source/target spéctegtorsZ.
Given the learned GMM parameters, the transformatio
function is the maximum likelihood (ML) estimatof the
target vector, given the corresponding source vecto
Specifically, this function takes the form of a gleied
mixture of the ML estimator for each component
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where wa((xi ) is the a posteriori probability that the framre
belongs to the acoustic class described by the cneniq:
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We refer to calculation of these a posteriori migtweights as
the classification step in transformation.

3. Illustrating the One-to-M any Problem

3.1. Sourcevs. Joint Classification

The benefits of learning the GMM parameter set itjoint
distribution (versus separate source and targetelapdire
explored in [1]. However, the difference betweemgsource
versus joint data in transformation (specificallgssification)
has yet to be examined. Though it is not feasibleractice to
have target data available in the classificatia@p sexploring
the difference between classification with soureesus joint
data provides insight into the types of sourcearget
mappings present in spectral conversion. Accorglingh
addition to the mixture weights in (3), we will ewie
conversion results using the following joint mixéuveights:
an(zi;,ué,ZéZ _ @)
Q
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The corresponding joint transformation functionhie same as
in (2) with only the mixture weights changing.

We will now examine conversion results using
classification with source and joint data. Our spedata is
taken from two parallel corpora of French speakeasnely a
female (source) and male (target), used in Frarelecém's
TTS systemBaratinoa Both acoustic databases are sampled
at 16kHz and segmented (with manual verificationjo i
phones and diphones. We consider only voiced phesdg8
in total, excluding 'P','T"/'K','S''CH','F") in trsformation, as
these phonemes carry most of the information reldate
speaker identity [2]. We take the middle frame ache phone
along with its two adjacent frames, comprising te&able"
part of the phone. Such a choice has two advantéigesthe
stable part of a phone is less influenced by adjgglones, so
it better represents an isolated acoustic evertrgk this
choice avoids need for a time-alignment algorithm a

association between source and target frames edbas the
corpus segmentation. We discuss transformatioalfgrhone
frames later in section 4.3. In total, we have aginately
82,000 feature vectors of which half are used darning and
half for testing. We calculate the discrete cepstooefficients
(order 16) for each frame using the Harmonic plusishl
Model (HNM) as presented in [5] with a 10ms stem an
maximum voicing frequency fixed to half the samplin
frequency. We examine an objective error metrienelg the
average MSE between the transformed and targetefram
normalized by the average MSE between the sourdé¢aaget

frames
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where V; (% ) can be calculated with either the source or joint

mixture weights, as specified. We discuss subjectinalyses
of the conversion results later in section 5. Hexe focus first

on objective measures to evaluate different comnwers
methods.
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Figure 1: MSE with Source ('X') and Joint ('XY")
Decoding wrt the number of GMM components Q.

Figure 1 plots the transformation error using seusrad
joint mixture weights as a function of the numbérGMM
component®). The two curves show that there is a significant
difference in performance between using source jait
mixture weights, indicating the presence of onenatmy
mappings. More explicitly, it is clear that the smetto-target
mappings are not strictly one-to-one, as in the cdis one-to-
one mapping, there is no difference between claasifn
with source or joint data. In calculation of bothrwes, the
model parameters remain unchanged; only the mixteights
differ. Consequently, in order to understand théedéhce in
performance between classification with source jaimt data,
we must examine the mixture weights.

Figure 2 shows histograms of the maximum mixture
weight and the corresponding MSE for joint and seur
classification, respectively, for the representatxampleQ =
16. In Figure 2a, nearly 80% of the total framewveha
maximum mixture weight greater than 0.9, showirat fbint
classification mostly clearly favors one GMM compah On
the other hand, in Figure 2b, only about 30% of sbarce-
classified frames have a maximum mixture weightignethan
0.9, indicating that source classification disttdsi mixture



weight more evenly over multiple components, crepti
"heavier" mixtures. In both Figures 2c and 2d, we that the
lower (higher) the maximum mixture weight, the rdgh
(lower) the MSE. These observations on source aimt |
classification describe a "one-to-many effect" tgblains the
difference in performance seen in Figure 1.
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Figure 2:Histograms of maximum mixture weight for
joint (@) & source (b) classification with the
corresponding MSE in (c) & (d), respectively.

3.2. Isolating One-to-M any M appings

We can now use the above observations to isolateef in
one-to-many mappings, according to a criterion@ gource
w(x) and jointw(z) mixture weights outlined below

One-to-One: wi (%) 2y & win(z)2y;
One-to-Many: wX.,(x)<y & Wi (z) 2y, (6)

where y is a threshold on the maximum mixture weight

values, Wy, =max(wy) . Upon examination of a range of
q

threshold values, we selegt = 0.8 as a representative case

for this work. Results obtained from applying tm&pping
criterion to the test data set witQ=16 are summarized in
Table 1. We see that a significant majority (mdrant 80%) of
frames is in either a one-to-one or one-to-manypimap The
remaining frames include outliers in the data araimgs in
many-to-many mappings. For frames in a one-to-oappimg,
there is virtually no difference in MSE between adiag with
source or joint data. On the other hand, for fraines one-to-
many mapping (or numerous one-to-many mappingsyeths
a significant difference in MSE, of greater tharbdB,
between decoding with source and joint frames. Tlhiusse
results confirm that one-to-many mappings occuquently
and present a significant source of error in tlessic GMM-
based approach to VC.

Table 1.MSE (dB) by mapping type, Acoustic GMM.

GMM One-to-One| Oneto-Many | Remaining
(Acoustic) (O) (M) R)

% frames 47 36 17

X decoding -5.99 -4.24 -2.97
XY decoding| -6.06 -5.75 -5.22

4. Context-Dependent Modeling

In section 3, we showed that one-to-many mappings a
indistinguishable in classic GMM-based conversigie/ding
"heavy" mixtures that result in high conversionoerin order
to combat this problem, we propose using contegeddent
parameter constraints on the GMM to improve classibn
by eliminating erroneous mixtures.

4.1. GMM with Phonetic Infor mation

In particular, we introduce phonetic informationtanthe

GMM framework. Specifically, we group frames by pleme

and attribute one GMM component to each group,ngi\28

in total. In learning a "Phonetic GMM", instead af EM

algorithm, Gaussian classes are generated accortling
phonetic label for each frame. The parameters fache
Gaussian component are estimated as follows:

Ny Ny
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where calculations are performed using thé, feature

vectors in the learning data set for a particulaorEemek. In
transformation, we can then classify frames basedtheir
phoneme label, avoiding mixture weight calculatitm.what
we refer to as transformation with phoneme sepamatihe
transformation function takes the same form a2)nkfut with
wy set to one for the component corresponding to the

phoneme label of the frame. Given the model pararaedf
the Phonetic GMM, mixture weights can also be dated for
the source and joint feature vectors as in (3) &4y
respectively.

4.2. Conversion Resultson Stable Parts

Table 2 summarizes the conversion results for tleuAtic
(A) and Phonetic (P) GMMs, with each model contagn28
Gaussian components. We see that classificatiorh wit
phoneme separation for a Phonetic GMM greatly afop@s
the classic acoustic GMM with source decoding,djiied an
improvement of about 0.9dB. We also see that theuatic
GMM performs the best with joint decoding, evenugb this
result is not achievable in practice. Thus, witke ®honetic
GMM, we make a slight sacrifice in the optimal (bubt
realizable) performance using joint acoustic desggdin order
to achieve significant gains using classificatioithwphoneme
separation afforded by this model.

Table 2.Conversion Results for Phonetic & Acoustic GMM.

GMM (Q=28) MSE (dB) M ean( Wpay)
P,Phoneme Separation -5.58 -
P, X Decoding -4.71 0.72
A, X Decoding -4.71 0.71

P, XY Decoding -5.84 0.92
A, XY Decoding -6.18 0.92

Moreover, we find that the Phonetic and Acoustic (G
behave nearly identically with source decodinghbiot MSE
and in mixture weight distribution. These similast suggest
that the problem of one-to-many mappings existsbath
models, without considering phoneme separation in
classification. Accordingly, we now re-visit theoptem of
one-to-many mappings within the context of a Phionet
GMM.



Table 3 shows the conversion results for the Phonet
GMM with a breakdown of the MSE for one-to-one am-
to-many frames according to the criterion in (6)e Bée that
the one-to-many effect, as discussed in sectids Bresent in
the Phonetic GMM with acoustic decoding. Moreover,
classification with phoneme separation improvesNt&E by
more than 1.2dB for frames in one-to-many mappimdsle
the results for frames in one-to-one mappings remaiually
unchanged. Thus, learning and classification based
phoneme label is able to reduce the errors regultom one-
to-many mappings.

Table 3.MSE (dB) by mapping type, Phonetic GMM.

GMM (Phonetic) (@) M R

% frames 35 44 21
Phoneme Separatior -5.68 -5.74 -5.07
X decoding -5.66 -4.52 -3.85
XY decoding -5.73 -5.99 -5.72

4.3. Resultsfor All Phone Frames

While the core of our analysis lies in examinindhé&or of
stable parts of phones, we also examined transfmman
entire phones including both stable and transifiames. In-
between the marked phone boundaries and centeraligre
source and target frames proportionally in timeabl& 4
summarizes the transformation results of the differ
approaches shown in Table 2 for learning and degpdiith
both stable and transition frames. Comparing theltiesn
Tables 2 and 4, we see that all methods suffeerfopmance
with the inclusion of transition frames. Moreovthe general
decrease in average maximum mixture weight indéscétat
there are more heavy mixtures in the source andt joi
decoding, yielding higher error overall. Note tte¢ phoneme
classification is less effective on the transitfeames, though
still outperforms the classic acoustic GMM-basedhoé with
source classification. These results indicate tthare is
interest in treating stable parts and transitiospbones
separately. For example, conversion can be cawigdon
stable parts and an interpolation method can bel use
transitions.

Table 4.Conversion Results for Phonetic & Acoustic
GMM, Stable & Transition Frames.

GMM (Q=28) MSE (dB) | Mean(wy,ay)
P,Phoneme Separation -4.87 --
P, X Decode -4.40 0.62
A, X Decode -4.43 0.67
P, XY Decode -5.48 0.84
A, XY Decode -5.80 0.89

5. Discussion & FutureWork

Our work follows the common VC method modifying astic
parameters of source speech in order to estimagettspeech.
The advantage in this type of approach to VC is ithatows
for the estimated speech to keep fine structurébdroriginal
signal that are not necessarily captured in thevemion
model. A perceptual evaluation of converted spegadlity
modifying the spectral envelope and pitch of solgpeech is
carried out in [9]. It is noted that, while the Hyesis model in

this case can achieve a reasonable speech queBing(
original target parameters, for example), the medfr

parameter conversion need improvement. In infolistEning

tests, we confirmed these observations and fuftherd that,

due to the degraded quality of the speech syntheswith

converted parameters, it was difficult to make aacl
distinction between the different decoding strategiresented
in this paper.

The problems in learning and converting speaker-
dependent parameters occur because time-alignmént o
individual source and target speech frames does not
necessarily ensure alignment on an acoustic ldmefuture
work, we will seek to use alternative methods tgrakpeaker
feature vectors. In particular, the results in fhdper suggest
that there is value in incorporating more contexpehdent
information in learning and conversion. Accordingbyr goal
will be to use both temporal and contextual infaiioya to
generate aligned speaker spaces with classes rhanare
acoustically homogeneous. This type of model geinera
relying on context-dependent information more dypse
follows methods for VC using adaptation of detaitgmbaker
models [9]. We, however, will maintain an approaochVC
using transformation directly on acoustic paranseterf
original source speech in order to achieve higHityuspeech
synthesis.

6. Conclusion

We have shown in the context of GMM-based spectral
conversion that one-to-many mappings exist andeptea
significant source of error in voice conversion.rtRarmore,
using context-dependent phonetic information inresy and
classification for the transformation model allegg the
problem presented by one-to-many mappings, thuatlgre
improving the conversion results.
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