Bidirectional 2.5-Gb/s WDM-PON Using FP-LDs Wavelength-Locked by a Multiple-Wavelength Seeding Source Based on a Mode-Locked Laser
Résumé
We experimentally investigate the operation of a cost-effective wavelength-division-multiplexed passive optical network (WDM-PON) based on wavelength-locked Fabry-Pérot laser diodes (FP-LDs). A single quantum-dash passively mode-locked laser (QD-MLL) is combined with an arrayed waveguide grating in WDM-PON architecture to provide a low-noise, coherent multiwavelength seeding source to injection-lock the FP-LDs for both downstream and upstream. The results show that the QD-MLL-injected FP-LD has the same performance when compared to the case of injection-locking by a low-noise external cavity laser. Error-free bidirectional transmission over 25 km for 16 channels with 42.7-GHz channel spacing is demonstrated at 2.5 Gb/s in the C-band and an optical budget higher than 30 dB is reached.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...