Geometric optics and instability for NLS and Davey-Stewartson models - Archive ouverte HAL
Article Dans Une Revue Journal of the European Mathematical Society Année : 2012

Geometric optics and instability for NLS and Davey-Stewartson models

Résumé

We study the interaction of (slowly modulated) high frequency waves for multi-dimensional nonlinear Schrodinger equations with gauge invariant power-law nonlinearities and non-local perturbations. The model includes the Davey--Stewartson system in its elliptic-elliptic and hyperbolic-elliptic variant. Our analysis reveals a new localization phenomenon for non-local perturbations in the high frequency regime and allows us to infer strong instability results on the Cauchy problem in negative order Sobolev spaces, where we prove norm inflation with infinite loss of regularity by a constructive approach.
Fichier principal
Vignette du fichier
cds2.pdf (403.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00494620 , version 1 (23-06-2010)

Identifiants

Citer

Rémi Carles, Eric Dumas, Christof Sparber. Geometric optics and instability for NLS and Davey-Stewartson models. Journal of the European Mathematical Society, 2012, 14 (6), pp.1885-1921. ⟨10.4171/JEMS/350⟩. ⟨hal-00494620⟩
175 Consultations
333 Téléchargements

Altmetric

Partager

More