ICA-based sparse feature recovery from fMRI datasets - Archive ouverte HAL
Communication Dans Un Congrès Année : 2010

ICA-based sparse feature recovery from fMRI datasets

Résumé

Spatial Independent Components Analysis (ICA) is increasingly used in the context of functional Magnetic Resonance Imaging (fMRI) to study cognition and brain pathologies. Salient features present in some of the extracted Independent Components (ICs) can be interpreted as brain networks, but the segmentation of the corresponding regions from ICs is still ill-controlled. Here we propose a new ICA-based procedure for extraction of sparse features from fMRI datasets. Specifically, we introduce a new thresholding procedure that controls the deviation from isotropy in the ICA mixing model. Unlike current heuristics, our procedure guarantees an exact, possibly conservative, level of specificity in feature detection. We evaluate the sensitivity and specificity of the method on synthetic and fMRI data and show that it outperforms state-of-the-art approaches.

Mots clés

Fichier principal
Vignette du fichier
paper.pdf (432.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00489506 , version 1 (05-06-2010)

Identifiants

Citer

Gaël Varoquaux, Merlin Keller, Jean Baptiste Poline, Philippe Ciuciu, Bertrand Thirion. ICA-based sparse feature recovery from fMRI datasets. Biomedical Imaging, IEEE International Symposium on, Apr 2010, Rotterdam, Netherlands. pp.1177. ⟨hal-00489506⟩
391 Consultations
247 Téléchargements

Altmetric

Partager

More