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ABSTRACT

Spatial Independent Components Analysis (ICA) is increas-
ingly used in the context of functional Magnetic Resonance
Imaging (fMRI) to study cognition and brain pathologies.
Salient features present in some of the extracted Independent
Components (ICs) can be interpreted as brain networks, but
the segmentation of the corresponding regions from ICs is
still ill-controlled. Here we propose a new ICA-based pro-
cedure for extraction of sparse features from fMRI datasets.
Specifically, we introduce a new thresholding procedure that
controls the deviation from isotropy in the ICA mixing model.
Unlike current heuristics, our procedure guarantees an exact,
possibly conservative, level of specificity in feature detec-
tion. We evaluate the sensitivity and specificity of the method
on synthetic and fMRI data and show that it outperforms
state-of-the-art approaches.

Index Terms— ICA, fMRI, ROC, sparse models.

1. INTRODUCTION

In neuro-imaging, ICA is the most popular method to ex-
plore the spatial correlation structure of fMRI signals. Some
extracted ICs match well-known brain networks [1, 2] and
have been shown to correspond to units targeted by neuro-
degenerate diseases [3]. These sources form spatial maps that
represent sparse networks of brain activity: only a small per-
centage of the voxels observed are active in a given network.
Daubechieset al. [4] have argued that this sparsity is key to
the success of ICA in the context of fMRI. When applied to
data generated from sparse sources, ICA amounts to sparse
coding [5]. It has enjoyed more success in the neuro-imaging
community, probably because it groups together correlated
features into components interpreted as brain networks. Cur-
rent state-of-the-art ICA models for fMRI (MELODIC [2])
apply univariate mixture models to ICs to separate signal from
noise and recover the sparse structure.

In this paper, we present a multivariate model of sparse
brain activity and an associated procedure for recovering the
sparse features with a statistical control of false detections in
the presence of noise. We will focus on single-subject analy-
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sis but the method could easily be extended to group analysis
with the addition of a group model.

2. SIGNAL MODELING AND ESTIMATION

ICA is an unsupervised learning algorithm. As such, it does
not provide a framework for statistical-significance testing,
but can be used to analyze fMRI data without external corre-
lates, such as in resting state. We introduce a model of the
fMRI signal based on the assumption of very sparse sources.

Generative model. In the observations from the scanner
Y

1, the underlying BOLD dynamics is confounded by obser-
vation noiseF. As with most fMRI ICA analysis procedures,
we assume that the signal of interest spans only a sub-space
of the observation space. ComponentsC spanning this sub-
space can be estimated using probabilistic principal compo-
nent analysis (PCA) [2], which assumesF to be Gaussian-
distributed, and lying in a subspace orthogonal toC:

Y = WC+ F, (1)

whereY andF are(ntime steps, nvoxels) matrices, the rows of
which form pattern vectors.C is the(ncomponents, nvoxels) pat-
tern matrix of the retained principal components andW is the
matrix of their loadings in the observed signal. In this paper,
we do not discuss estimation of the sub-space of interest, but
focus on recovering sparse brain-activity sources fromC.

We model the patternsC as generated by a set of sources
A, confounded by additive noiseE, and observed as a linear
mixture in the sub-space spanned byC:

C = MB (2) B = A+E (3)

M is an orthogonal mixing matrix,A, B, and E are
(ncomponents, nvoxels) matrices. UnlikeF, E is in the same
sub-space as the brain sources. In addition, we assume that
the true sources correspond to the marginalsAi that are
sparse: most of the coefficients ofAi are zeros. As a result,
the histogram ofAi is strongly super-Gaussian: it has heavy
tails. If the amplitude of the noiseE is small compared to the
non-zero coefficients ofA, B is also super-Gaussian and can

1
Y corresponds to the data from the scanner after slice-timinginterpola-

tion and motion correction. In addition, when doing group analysis, a normal-
ization procedure is often applied, followed by Gaussian spatial smoothing.



be estimated fromC using ICA. We use FastICA, a proce-
dure that selects a basis of the signal sub-space maximizing
non-Gaussianity of the corresponding marginal distributions
[6].

If the componentsB are observed mixed, the observed
projectionsCi reflect mostly the isotropic noiseE and not
the sources of interestA that are sparse only in a particular
basis. This is why the estimation of the mixing model (2)
is important for fMRI data analysis, as the marginals on the
estimated basis separateA from the background noiseE.

Thresholding ICs to control for noise. We assume that
the values of the non-zero voxels of sourcesA are larger than
the standard deviationσ ofE. According to our model, select-
ing voxels specific of the support ofA amounts to choosing a
thresholdτα to apply on the ICŝB. ICA estimates particular
directions of the feature space, thus a possible null hypothesis
H0 for ICA is that all directions are equivalent. As a result,
the null distribution for the marginalsAi is given by projec-
tions on random directionsω of the feature space.

p(Ai > τα|H0) = mean
ω, ||ω||=1

p(|ωT
B| > τα) (4)

We can sample this distribution directly from the data. In
addition,ωT

B is a linear combination of the random variables
Bi. As the sub-space has been whitened by the PCA, they all
have a variance of 1. For high dimensions, the central limit
theorem thus states that the distribution ofωT

B is Gaussian
of variance 1. In this case, the p-value is given by the inverse
of the cumulative distribution function of a Gaussian process,
and the threshold can be set as with a normal null.

A representation of the signal in feature space is given
on Fig. 1 for various distributions: synthetic data generated
from the model exposed above (Fig. 1a), synthetic data with
additional super-Gaussian noise, (Fig. 1b), and fMRI data
(Fig. 1c). All share a central mode corresponding toE in our
description, that can be approximated as a multivariate Gaus-
sian process. In addition, for each mixing direction, activated
voxels can be found when moving away from the center.

Our model is different from most noisy ICA models, as
they assume that contribution of the noise to the signal sub-
space is small. They account for the noise in the ICA estima-
tion by correcting the bias it introduces to the whitening and
the measures of statistical independence [7]. In our model,
noise accounts for a large fraction of the variance in the sig-
nal sub-space.

3. SIMULATION STUDY

We generate synthetic samples̃Y from our model with a
known ground truth and noise model. We consider 9 features
Ã, that is 2D maps (80, 80) pixel large and made of one
or two rectangles of uniformly-active pixels on a null back-
ground. We add random noisẽE generated by a multivariate
normal distribution of isotropic variance 1. We control the
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Fig. 1. Scatter plot of samples projected in the subspace
spanned by the two first ICs identified. The density is rep-
resented by a colormap ranging from black (low density) to
white (high density). The threshold as set by the model with
p = 10−2 is represented as a light blue circle.(a) Simulated
data with 9 features total, withE generated from a Gaussian
process withσ = 0.15. (b) Same simulations with super-
Gaussian noise (kurtosis of4). (c) fMRI data.

amplitude of the noise with a parameterλ: B̃ = Ã+ λẼ.
We draw a random rotation matrix̃M to mix the patterns̃B,
and apply a Gaussian spatial smoothing of FWHM 2 pixels
to simulation the point spread function of the scanner. Due
to the smoothing, the noise term is observed as a random
Gaussian field with a reduced variance compared to the initial
random process. We setλ to control the variance of this field.

In addition, as it is likely that, in real fMRI settings, not all
background noise can be described by Gaussian processes, we
generate synthetic data with non-Gaussian noise. For this,in
addition to the previous Gaussian random field,Ẽg, we gen-
erate a super-Gaussian contributionẼng by applying a non-
linear rescaling to a smoothed Gaussian random field. We use
the cubic non-linearity that generatesspikynoise with a long-
tailed distribution. The additional noise term is thus sparse,
and not invariant by rotation of the feature space. We add
it to the signal of interest in the observation basis. We set
the contributions of both noise terms to control the variance
and kurtosis of the resulting random process:C̃ = M̃ Ã +
λ (cos θ M̃ Ẽg + sin θ Ẽng). This structured noise term vio-
lates the noise model of the ICA algorithm and poses thus a
challenge to the feature extraction by offsetting the estimation
of the mixing matrix, and thus the projection.

Spatial maps generated by the simulations are presented
on Fig. 2. The samples projected in feature space on the
2 first ICs are presented on Fig. 1. We apply ICA estima-
tion and thresholding as described above. To quantify the
specificity and the sensitivity in feature detection, we plot
receiver-operator characteristics on Fig. 4 for Gaussian and
super-Gaussian (kurtosis= 4) noise. Increasing noise ampli-
tudeσ degrades estimation performance, as the central mode
becomes indistinguishable from the outliers we are interested
in. Performances are slightly degraded by the addition of
the super-Gaussian noise. It induces errors in the choice of
the projection basis, as can be seen on Fig. 1b: in the pro-
jected space, sources are not completely unmixed. In addi-
tion, on Tab. 1, we compare false positive rates to the spec-
ified p-value. We find that for Gaussian noise amplitudes up
to σ = 0.20 or super-Gaussian noise amplitude ofσ = 0.15,



Fig. 2. Simulated data, showing 5 samples out of 9, forE

generated from a super-Gaussian process withσ = 0.15 and
a kurtosis of4. The threshold is set by the model withp =
10−2. Top row: observed samplesY. Middle row : ICs
B. Bottom row: estimated sourcesA, the ground truth is
outlined in light yellow.

Specified p-value 5·10
−2

1.0·10
−2

5.0·10
−3

Gaussian,σ = .15 4.0·10
−2

7.1·10
−3

4.0·10
−3

super-Gaussian,σ = .15 4.2·10
−2

1.0·10
−2

6.2·10
−3

Gaussian,σ = .20 4.9·10
−2

9.4·10
−3

5.2·10
−3

super-Gaussian,σ = .20 5.2·10
−2

1.3·10
−2

7.9·10
−3

Gaussian,σ = .30 6.0·10
−2

1.3·10
−2

7.4·10
−3

super-Gaussian,σ = .30 5.9·10
−2

1.5·10
−2

1.0·10
−2

fMRI data 3.6·10
−2

1.7·10
−2

1.3·10
−2

Table 1. False positive rates as a function of model-based
p-value, for simulated and fMRI data.

the p-values give an exact control on type 1 errors. With more
noise, the tail of the central mode cannot account for all false
detections for small p-values. We stipulate that the additional
errors come from projection error due to incomplete source
unmixing by the ICA procedure.

4. FMRI STUDY

We apply our method to fMRI data for 12 subjects at rest
from a previous study [8]. 820 volumes were acquired with
a repetition time (TR) of1.5 s. We run the procedure (ICA
analysis and thresholding) for single-subject data on the first
40 principal components. For fMRI data, the ground truth is
not known, so we generate degraded datasets from the origi-
nal dataset, and consider the latter as a pseudo ground truthto
quantify error rates. This procedure quantifies consistency of
the estimator in the presence of noise. To generate degraded
datasets while retaining observations of the same brain activ-
ity, we use one volume out of 3. The effective TR of the down-
sampled datasets is4.5 s. This sampling rate is enough to
retain most of the hemodynamic response, convolved by the
6-second-long response function. In addition, the 3 resulting
interleaved time series sample different high-frequency noise

Fig. 4. ROC plot: sensitivity as a function of false posi-
tive rate for synthetic data using Gaussian and super-Gaussian
(kurtosis = 4) noise of varyingσ, as well as for fMRI data.

that confounds the signal of interest. Thresholded ICs esti-
mated on the various resampled datasets for one subject are
matched with the corresponding pseudo ground truth. Fig. 3
presents pseudo ground truth and downsampled data. On non-
thresholded ICs, we can see that the level of background noise
is indeed higher in ICs learned on downsampled data. We run
the MELODIC mixing model on the ICs to compare sensitiv-
ity (false negatives) and specificity (false positives).

As seen on the ROC plot (Fig. 4), average performance on
fMRI data for the 12 subjects is on par with simulated data.
Good control of false positives can be achieved, but the true
positive rate remains limited. This can be explained by er-
rors in our pseudo-ground truth. In addition, the false positive
rate is controlled by the specified p-value only to10−2, al-
though to account for errors in the pseudo-ground truth, the
observed false positive rate should be corrected by a factor
0.5. With MELODIC’s mixture model, we specify different
inter-class mixing probability ratios to vary specificity;we do
not report on very large or very small ratios as they induce
non-monotonous thresholding and poor overall performance.
Our multivariate thresholding proceeding can achieve better
specificity/sensitivity trade off MELODIC’s mixture model.

ICs estimated on fMRI data most often display a few
salient features related to anatomical regions and may be
interpreted as brain networks. On such IC, both our thresh-
olding procedure and MELODIC’s mixture model extract
similar regions, although our procedure yields fewer small
clusters outside of the main segmented areas (see Fig. 3, top).
In contrast, some ICs, representative of non-cognitive pro-
cesses such as blood flow or movement, are very fragmented
and diffuse with no region strongly standing out. On these
ICs, a mixture model fits the null distribution to the center
of the histogram, and thus selects large regions, whereas our
thresholding procedure selects very few voxels, as it does not
consider the component by itself, but as part of the complete
multivariate signal (see Fig. 3, bottom).



Pseudo ground truth MELODIC mixture model Multivariate thresholding procedure

Downsampled data

Pseudo ground truth MELODIC mixture model Multivariate thresholding procedure

Downsampled data

Fig. 3. ICs estimated from fMRI data and thresholded using MELODIC’s mixture model, and our multivariate thresholding
procedure.Top rows: IC detecting the primary visual areas.Bottom rows: IC representative of a vascular artifact.

5. CONCLUSION

This contribution presents a procedure for thresholding ICA
patterns of fMRI time series to recover sparse sources usinga
multivariate model of spatially-sparse brain activity that does
not rely on correlating with external stimuli. From a practical
point of view, the main improvement over existing ICA-based
methods for fMRI is that non-neuronal patterns are rejectedas
they do not correspond to very salient features. We have val-
idated on simulated data and resting-state fMRI data that the
procedure can yield exact control of the false positive rates
for p > 10−2 and achieves better sensitivity/specificity trade-
offs than the current state-of-art fMRI ICA support-selection
procedures. Control of false detections and consistency ofes-
timation on noisy data is important for clinical and medicalre-
search applications of resting-state fMRI. Our procedure can
be understood as outlier detection with projection pursuit, as
proposed by Gnanadesikan and Kettenring [9], using ICA.
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