Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs - Archive ouverte HAL
Article Dans Une Revue Discussiones Mathematicae Graph Theory Année : 2012

Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs

Résumé

The oriented chromatic number of an oriented graph $\vec G$ is the minimum order of an oriented graph $\vev H$ such that $\vec G$ admits a homomorphism to $\vev H$. The oriented chromatic number of an undirected graph $G$ is then the greatest oriented chromatic number of its orientations. In this paper, we introduce the new notion of the upper oriented chromatic number of an undirected graph $G$, defined as the minimum order of an oriented graph $\vev U$ such that every orientation $\vec G$ of $G$ admits a homomorphism to $\vec U$. We give some properties of this parameter, derive some general upper bounds on the ordinary and upper oriented chromatic numbers of Cartesian, strong, direct and lexicographic products of graphs, and consider the particular case of products of paths.
Fichier principal
Vignette du fichier
upper1.pdf (176.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00483673 , version 1 (16-05-2010)

Identifiants

Citer

Eric Sopena. Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs. Discussiones Mathematicae Graph Theory, 2012, 32 (3), pp.517-533. ⟨hal-00483673⟩

Collections

CNRS TDS-MACS
133 Consultations
100 Téléchargements

Altmetric

Partager

More