Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source Separation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source Separation

Résumé

The underdetermined blind audio source separation problem is often addressed in the time-frequency domain by assuming that each time-frequency point is an independently distributed random variable. Other approaches which are not blind assume a more structured model, like the Spectral Gaussian Mixture Models (Spectral-GMMs), thus exploiting statistical diversity of audio sources in the separation process. However, in this last approach, Spectral-GMMs are supposed to be learned from some training signals. In this paper, we propose a new approach for learning Spectral-GMMs of the sources without the need of using training signals. The proposed blind method significantly outperforms state-of-the-art approaches on stereophonic instantaneous music mixtures.
Fichier principal
Vignette du fichier
2009_ICA_ArberetOzerovVincentGribonval_BlindSpectralGMM.pdf (160.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00482287 , version 1 (10-05-2010)

Identifiants

  • HAL Id : hal-00482287 , version 1

Citer

Simon Arberet, Alexey Ozerov, Rémi Gribonval, Frédéric Bimbot. Blind Spectral-GMM Estimation for Underdetermined Instantaneous Audio Source Separation. International Conference on Independent Component Analysis and Blind Source Separation (ICA), Mar 2009, Paraty, Brazil. pp. 751 - 758. ⟨hal-00482287⟩
374 Consultations
223 Téléchargements

Partager

More