Estimation of the hazard function in a semiparametric model with covariate measurement error - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2009

Estimation of the hazard function in a semiparametric model with covariate measurement error

Résumé

We consider a failure hazard function, conditional on a time-independent covariate , given by . The baseline hazard function and the relative risk both belong to parametric families with . The covariate has an unknown density and is measured with an error through an additive error model where is a random variable, independent from , with known density . We observe a -sample , = 1, ..., , where is the minimum between the failure time and the censoring time, and is the censoring indicator. Using least square criterion and deconvolution methods, we propose a consistent estimator of using the observations , = 1, ..., .
We give an upper bound for its risk which depends on the smoothness properties of and as a function of , and we derive sufficient conditions for the -consistency. We give detailed examples considering various type of relative risks and various types of error density . In particular, in the Cox model and in the excess risk model, the estimator of is -consistent and asymptotically Gaussian regardless of the form of .

Mots clés

Fichier principal
Vignette du fichier
PEER_stage2_10.1051%2Fps%3A2008004.pdf (472.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00480192 , version 1 (03-05-2010)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Marie-Laure Martin-Magniette, Marie-Luce Taupin. Estimation of the hazard function in a semiparametric model with covariate measurement error. ESAIM: Probability and Statistics, 2009, 13, pp.87-114. ⟨10.1051/ps:2008004⟩. ⟨hal-00480192⟩
112 Consultations
86 Téléchargements

Altmetric

Partager

More