Adaptive mixtures of regressions: Improving predictive inference when population has changed - Archive ouverte HAL
Article Dans Une Revue Communications in Statistics - Simulation and Computation Année : 2014

Adaptive mixtures of regressions: Improving predictive inference when population has changed

Résumé

The present work investigates the estimation of regression mixtures when population has changed between the training and the prediction stages. Two approaches are proposed: a parametric approach modelling the relationship between dependent variables of both populations, and a Bayesian approach in which the priors on the prediction population depend on the mixture regression parameters of the training population. The relevance of both approaches is illustrated on simulations and on an environmental dataset.
Fichier principal
Vignette du fichier
AdaptMixtReg-v2.pdf (549.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00477597 , version 1 (29-04-2010)
hal-00477597 , version 2 (19-09-2011)
hal-00477597 , version 3 (13-10-2012)

Identifiants

Citer

Charles Bouveyron, Julien Jacques. Adaptive mixtures of regressions: Improving predictive inference when population has changed. Communications in Statistics - Simulation and Computation, 2014, 43 (10), pp.22. ⟨10.1080/03610918.2012.758737⟩. ⟨hal-00477597v3⟩
312 Consultations
342 Téléchargements

Altmetric

Partager

More