Joint segmentation of wind speed and direction using a hierarchical model - Archive ouverte HAL
Article Dans Une Revue Computational Statistics and Data Analysis Année : 2007

Joint segmentation of wind speed and direction using a hierarchical model

Résumé

The problem of detecting changes in wind speed and direction is considered. Bayesian priors, with various degrees of certainty, are used to represent relationships between the two time series. Segmentation is then conducted using a hierarchical Bayesian model that accounts for correlations between the wind speed and direction. A Gibbs sampling strategy overcomes the computational complexity of the hierarchical model and is used to estimate the unknown parameters and hyperparameters. Extensions to other statistical models are also discussed. These models allow us to study other joint segmentation problems including segmentation of wave amplitude and direction. The performance of the proposed algorithms is illustrated with results obtained with synthetic and real data.

Domaines

Autre [cs.OH]
Fichier principal
Vignette du fichier
Tourneret_870.pdf (432.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00474912 , version 1 (20-10-2023)

Identifiants

Citer

Nicolas Dobigeon, Jean-Yves Tourneret. Joint segmentation of wind speed and direction using a hierarchical model. Computational Statistics and Data Analysis, 2007, 51 (12), pp.5603--5621. ⟨10.1016/j.csda.2007.04.016⟩. ⟨hal-00474912⟩
79 Consultations
30 Téléchargements

Altmetric

Partager

More