On bilinear forms based on the resolvent of large random matrices - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2013

On bilinear forms based on the resolvent of large random matrices

Résumé

Consider a matrix $\Sigma_n$ with random independent entries, each non-centered with a separable variance profile. In this article, we study the limiting behavior of the random bilinear form $u_n^* Q_n(z) v_n$, where $u_n$ and $v_n$ are deterministic vectors, and Q_n(z) is the resolvent associated to $\Sigma_n \Sigma_n^*$ as the dimensions of matrix $\Sigma_n$ go to infinity at the same pace. Such quantities arise in the study of functionals of $\Sigma_n \Sigma_n^*$ which do not only depend on the eigenvalues of $\Sigma_n \Sigma_n^*$, and are pivotal in the study of problems related to non-centered Gram matrices such as central limit theorems, individual entries of the resolvent, and eigenvalue separation.
Fichier principal
Vignette du fichier
quadra-ihp-extended.pdf (326.33 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00474126 , version 1 (19-04-2010)
hal-00474126 , version 2 (23-08-2011)

Identifiants

Citer

Walid Hachem, Philippe Loubaton, Jamal Najim, Pascal Vallet. On bilinear forms based on the resolvent of large random matrices. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2013, 49 (1), pp.36-63. ⟨10.1214/11-AIHP450⟩. ⟨hal-00474126v2⟩
249 Consultations
284 Téléchargements

Altmetric

Partager

More