Asymptotic optimal SINR performance bound for space-time beamforming
Résumé
In many detection applications, the main performance criterion is the signal to interference plus noise ratio (SINR). After linear filtering, the optimal SINR corresponds to the maximum value of a Rayleigh quotient, which can be interpreted as the largest generalized eigenvalue of two covariance matrices. Using an extension of Szegö's theorem for the generalized eigenvalues of Hermitian block Toeplitz matrices, an expression of the theoretical asymptotic optimal SINR w.r.t. the number of taps is derived for arbitrary arrays with a limited but arbitrary number of sensors and arbitrary spectra. This bound is interpreted as an optimal zero-bandwidth spatial SINR in some sense. Finally, the speed of convergence of the optimal wideband SINR for a limited number of taps is analyzed for several interference scenarios
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...