A Bayesian network approach to model local dependencies among SNPs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

A Bayesian network approach to model local dependencies among SNPs

Résumé

In this preliminary work, we investigate a method to model linkage disequilibrium among SNPs (Single Nucleotide Polymorphisms) in the genome. The genetic data such as SNPs is characterized by a typical block-like structure along the genome. Graphical models such as Bayesian networks can provide a fine and biologically relevant modeling of dependencies for both haplotypical and genotypical SNP data. We applied a MWST-based algorithm (Maximum Weighted Spanning Tree) to construct a Bayesian network, relying on the underlying local dependencies.
Fichier principal
Vignette du fichier
modgraph_meeting_mourad_sinoquet_leray.pdf (409.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00470528 , version 1 (06-04-2010)

Identifiants

  • HAL Id : hal-00470528 , version 1

Citer

Raphaël Mourad, Christine Sinoquet, Philippe Leray. A Bayesian network approach to model local dependencies among SNPs. MODGRAPH 2009 Probabilistic graphical models for integration of complex data and discovery of causal models in biology, satellite meeting of JOBIM 2009, Jun 2009, Nantes, France. ⟨hal-00470528⟩
251 Consultations
108 Téléchargements

Partager

More