Asymptotic theory for fractional regression models via Malliavin calculus - Archive ouverte HAL
Article Dans Une Revue Journal of Theoretical Probability Année : 2010

Asymptotic theory for fractional regression models via Malliavin calculus

Résumé

\noindent We study the asymptotic behavior as $n\to \infty$ of the sequence $$S_{n}=\sum_{i=0}^{n-1} K(n^{\alpha} B^{H_{1}}_{i}) \left( B^{H_{2}}_{i+1}-B^{H_{2}}_{i}\right)$$ where $B^{H_{1}}$ and $B^{H_{2}}$ are two independent fractional Brownian motions, $K$ is a kernel function and the bandwidth parameter $\alpha$ satisfies certain hypotheses in terms of $H_{1}$ and $H_{2}$. Its limiting distribution is a mixed normal law involving the local time of the fractional Brownian motion $B^{H_{1}}$. We use the techniques of the Malliavin calculus with respect to the fractional Brownian motion.
Fichier principal
Vignette du fichier
asymptotic-fin.pdf (259.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00470017 , version 1 (03-04-2010)

Identifiants

Citer

Solesne Bourguin, Ciprian A. Tudor. Asymptotic theory for fractional regression models via Malliavin calculus. Journal of Theoretical Probability, 2010, 25 (2), pp.536-564. ⟨hal-00470017⟩
119 Consultations
94 Téléchargements

Altmetric

Partager

More