Shear induced drainage in foamy yield-stress fluids - Archive ouverte HAL
Article Dans Une Revue Physical Review Letters Année : 2010

Shear induced drainage in foamy yield-stress fluids

Résumé

Shear induced drainage of a foamy yield stress fluid is investigated using MRI techniques. Whereas the yield stress of the interstitial fluid stabilizes the system at rest, a fast drainage is observed when a horizontal shear is imposed. It is shown that the sheared interstitial material behaves as a viscous fluid in the direction of gravity, the effective viscosity of which is controlled by shear in transient foam films between bubbles. Results provided for several bubble sizes are not captured by the R^2 scaling classically observed for liquid flow in particulate systems, such as foams and thus constitute a remarkable demonstration of the strong coupling of drainage flow and shear induced interstitial flow. Furthermore, foam films are found to be responsible for the unexpected arrest of drainage, thus trapping irreversibly a significant amount of interstitial liquid.
Fichier principal
Vignette du fichier
Goyon_PRL2010.pdf (148.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00467198 , version 1 (26-03-2010)

Identifiants

Citer

Julie Goyon, François Bertrand, Olivier Pitois, Guillaume Ovarlez. Shear induced drainage in foamy yield-stress fluids. Physical Review Letters, 2010, 104, pp.128301. ⟨10.1103/PhysRevLett.104.128301⟩. ⟨hal-00467198⟩
337 Consultations
187 Téléchargements

Altmetric

Partager

More